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ABSTRACT

The number and complexity of JavaScript-based web applications

are rapidly increasing, but methods and tools for automatically test-

ing them are lagging behind, primarily due to the difficulty in an-

alyzing the subtle interactions between the applications and the

event-driven execution environment. Although static analysis tech-

niques have been routinely used on software written in traditional

programming languages, such as Java and C++, adapting them to

handle JavaScript code and the HTML DOM is difficult. In this

work, we propose the first constraint-based declarative program

analysis procedure for computing dependencies over program vari-

ables as well as event-handler functions of the various DOM ele-

ments, which is crucial for analyzing the behavior of a client-side

web application. We implemented the method in a software tool

named JSDEP and evaluated it in ARTEMIS, a platform for auto-

mated web application testing. Our experiments on a large set of

web applications show the new method can significantly reduce the

number of redundant test sequences and significantly increase test

coverage with minimal overhead.

CCS Concepts

•Software and its engineering→ Automated static analysis; Soft-

ware testing and debugging;

Keywords

JavaScript, Static analysis, Automated testing, Event dependency,
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1. INTRODUCTION
Static analysis of client-side JavaScript web applications is dif-

ficult not only due to the language’s dynamic features [19, 35] but

also due to the subtle interactions between JavaScript code and the

event-driven execution environment. At the center of this execu-

tion environment is the HTML Document Object Model (DOM).

The DOM stores the buttons, images, text-boxes, and other visible

objects on the web page, together with a large number of event-

handler functions attached to these DOM objects. Prior work on

statically analyzing JavaScript focused primarily on modeling the
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Figure 1: Overall flow of DOM-event dependency analysis.

language [3, 8, 14–16, 31, 39] as opposed to the language’s inter-

action with the DOM. For example, existing methods do not ro-

bustly handle dependencies between DOM event handlers, e.g., the

various functions responding to the user’s actions, timers, AJAX re-

quests, or their callbacks, despite that such dependencies are crucial

in reasoning about client-side web applications.

We propose the first constraint-based static analysis method for

computing dependencies both across event-handlers and between

HTML DOM elements. Such DOM event dependencies fundamen-

tally differ from traditional control and data dependencies over pro-

gram variables because they are tied to the event-driven execution

environment. Specifically, a modern JavaScript web application

stores various data inside the DOM while simultaneously using

JavaScript code to read and manipulate this data in response to

various, often user-triggered, events such as onclick, onload, and

timeout. If executing the handler mA of event A causes the han-

dler mB of event B to be registered, triggered, or removed, we say

that event B depends on event A, denoted A →DOM B. This dif-

fers from the traditional notion of control dependencies (→ctrl ) and

data dependencies (→data ) over program variables. Furthermore,

statically reasoning about DOM event dependencies is challenging:

it requires proper handling of the aliasing between DOM elements,

and modeling the effects of APIs provided by the web browser and

popular frameworks such as jQuery.

Figure 1 shows the flow of our DOM event dependency analysis,

which follows the declarative program analysis framework [25, 28,

32, 42]. Given the HTML and JavaScript source file(s) of a client-
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side web application, we first extract the JavaScript code and gener-

ate its control flow graph (CFG). We traverse the CFG to encode its

control and data flows in a set of logical constraints called Datalog

facts. Next, we specify our static dependency analysis in a set of

Datalog inference rules. Finally, we use an off-the-shelf Datalog

engine [17] in Z3 [10] to solve the Datalog program. Internally, the

Datalog engine repeatedly applies the set of inference rules to the

set of facts until they reach a fix-point. The fix-point results in a

new relation →DOM over DOM events. This relation allows the

user to query for dependency information through Z3’s API.

Our method for statically computing DOM event dependencies

differs from the prior work. First, it differs from the declarative

methods [6, 25, 28, 32, 42] for analyzing programs written in stan-

dard programming languages such as Java: we analyze JavaScript

web applications. Additionally, the static analysis of Guarnieri

and Livshits [14], while targeting JavaScript, focused on type infer-

ence as opposed to inter-event-handler dependencies in the HTML

DOM. Our method also differs from the dynamic change impact

analysis of Alimadadi et al. [2], which analyzed concrete execu-

tions to identify the interplay between JavaScript code changes and

the content of the DOM: since it is dynamic, their analysis is valid

only for the given executions; ours, based on static analysis, is valid

for all executions. Madsen et al. [29, 30] proposed several static

analysis methods for JavaScript, but they targeted applications us-

ing Node.js [30] or Windows 8 APIs [29]. The static analysis tool

of Jensen et al. [20] modeled some aspects of the HTML DOM and

browser APIs, but its focus was on type inference as opposed to a

dependency analysis.

We implemented our new method in a static analysis tool named

JSDEP, building upon ESPRIMA for parsing the JavaScript source

code, JS-WALA for generating the control-flow graph, and Z3 for

solving the Datalog program. We evaluated JSDEP on a large set

of client-side web applications. Overall, we analyzed 21 programs

totaling 18,559 lines of JavaScript code. Our experiments show that

our static analysis method can quickly process the JavaScript code

of these applications and compute the DOM event dependencies

with reasonable accuracy.

To demonstrate our technique’s usefulness, we leveraged its re-

sults to improve the performance of a popular automated web ap-

plication testing tool named ARTEMIS [5]. ARTEMIS traverses the

application’s execution space by systematically triggering handlers

of various DOM events. However, since ARTEMIS cannot statically

compute DOM event dependencies, it relies on heuristics for gener-

ating sequences of event-handler executions. We show empirically

that these heuristics are largely random and introduce many redun-

dant tests. But, our DOM event dependency analysis can provably

prune redundant test sequences and thus direct ARTEMIS to explore

truly useful tests. In particular, the default ARTEMIS stuck at 67%

statement coverage even after running for 3.5 hours, whereas our

new method enabled ARTEMIS to quickly reach 80% coverage.

Besides ARTEMIS, our static DOM event dependency analysis

may benefit other dynamic analysis or symbolic execution tools

such as Kudzu [37], SymJS [26], and Jalangi [38]. A problem that

is common to these tools is that they lack the capability of conduct-

ing a whole-program static analysis; in this sense, our new method

is complementary. In a broader sense, our dependency analysis

method is useful in many other software engineering applications,

e.g., to improve program understanding, software maintenance, au-

tomated debugging, and program repair.

In summary, the main contributions of our work are:

• We propose the first constraint-based static dependency anal-

ysis for client-side web applications, taking into considera-

tion not only traditional control and data dependencies but

also the new DOM-event dependencies.

• We propose a new method for leveraging our static depen-

dency analysis results in an automated web application test-

ing tool, ARTEMIS, to eliminate redundant tests and improve

test coverage.

• We implement these new methods and evaluate them on a

large set of web applications to demonstrate the efficiency of

the static analysis method and its effectiveness in improving

automated testing.

The remainder of this paper is organized as follows. We first

motivate the main ideas of our new methods through examples in

Section 2. We establish notation in Section 3, and formalize our

static dependency analysis in Section 4. We present the integra-

tion of our dependency analysis with ARTEMIS in Section 5. We

evaluate our approach empirically in Section 6. Finally, we review

related work and conclude in Sections 7 and 8.

2. MOTIVATION
In this section, we show what DOM event dependencies are and

how they can improve the automated testing of web applications.

2.1 DOM Event Dependency
Consider the example in Figure 2. An HTML file defines the

DOM elements including four buttons, and a JavaScript file de-

fines the functions manipulating these elements. The four buttons,

named test1–test4, are referenced in the JavaScript using the vari-

ables a, b, c, and d, respectively. The onclick event handler of a, i.e.,

the function executed if the button test1 is clicked, registers the

onclick event handler of c to the function makeSomeNoise(). The

onclick event handler of b increments the value of x. Since x is

used in makeSomeNoise() to control the branch conditions, the han-

dler of b affects, in some sense, the behavior of the event handler

of c. Finally, the event handler of d prints a message to the console.

From the JavaScript code, we identify the following dependencies:

• Clicking test1 registers an event handler to test3.

• Clicking test2 increments the value of x, which in turn af-

fects the same handler of test2.

• Clicking test3 traverses the program paths of the handler

function makeSomeNoise() based on the value of x.

We say that the onclick event of test3 depends on the onclick

event of test1 since the handler of test3 is registered only when

the handler of test1 is executed. Also, the onclick event of test3

depends on the onclick event of test2 since the handler of test2

modifies the value of x read by the handler of test3. Similarly, the

onclick event of test2 depends on itself due to the reads/writes to

x. In contrast, the handler of test4 does not depend on any DOM

event. These DOM event dependencies are shown in Figure 3.

There are two types of dependencies in Figure 3: one relying

on traditional control and data dependencies, and another relying

on the new DOM event dependency relation. Specifically, test2

depends on test2 because the read and write of variable x in the

handler of test2 changes the program state, which also affects the

behavior of makeSomeNoise() for test3. In contrast, test3 depends

on test1 because the handler of test1 installs the handler of test3

– this type of dependency arises only from the specific event-driven

execution environment of the web browser; it cannot be expressed

using the traditional control and data dependency relations.

To the best of our knowledge, the only work somewhat related

to our new dependency analysis is the change impact analysis pro-

cedure developed by Alimadadi et al. [2]. It monitors the interplay

between JavaScript code changes and their impact on the DOM.

However, it relies on a trace-based dynamic analysis, and is there-

fore only valid for the given execution traces. Our method, in con-

trast, is solely static and valid over all possible executions. In addi-

tion, the modeling of dependencies between event handlers in Ali-
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1 <html>

2 <head>

3 <p Click example of three buttons </P>

4 <script type="text/javascript" src="ex.js"></

script>

5 </head>

6 <body>

7 <div id="content"> ... </div>

8 <div id="buttons">

9 <button id="test1" type="button"> b1 </button>

10 <button id="test2" type="button"> b2 </button>

11 <button id="test3" type="button"> b3 </button>

12 <button id="test4" type="button"> b4 </button>

13 </div>

14 </body>

15 </html>

1 var a = document.getElementById(’test1’);

2 var b = document.getElementById(’test2’);

3 var c = document.getElementById(’test3’);

4 var d = document.getElementById(’test4’);

5 var x = 0;

6 function makeSomeNoise() {

7 if (x<2) {console.log("x is lower than 2");}

8 else if (x<4) {console.log("x is lower than 4");}

9 else if (x<6) {console.log("x is lower than 6");}

10 else if (x<8) {console.log("x is lower than 8");}

11 else {console.log("x is higher than 8");

12 some error codes;}

13 }

14 a.addEventListener("click", function() {

15 c.onclick = makeSomeNoise; });

16 b.addEventListener("click", function() {

17 x = x + 1; });

18 d. addEventListener("click", function() {

19 console.log("test4 is clicked!"); });

Figure 2: Example HTML page and associated JavaScript file.

madadi et al. [2] is not as accurate as our method. In particular, they

assume that function g depends on function f (Definition 9 in [2])

if f invokes g and either (1) the signature of g indicates that it takes

parameters or (2) the definition of f includes a return value. This

is a much coarser definition than ours: we model the actual impact

of the statements in a function during our dependency analysis.

2.2 Web Application Testing
Next we show how DOM event dependencies can help improve

automated web application testing tools like ARTEMIS. Such tools

generate test sequences by systematically triggering user events up
to a fixed depth. The search tree of our running example (Figure 2)

up to depth three can be seen in Figure 4 (a). Each edge repre-

sents the execution of an event handler, and each path represents a

test sequence. The default algorithm in ARTEMIS inefficiently ex-

plores the search space since many of its randomly generated test

sequences are actually redundant. For example, the onclick event

Click of

test 1

Registration

test 3

Click of

test 2

Click of

test 2

Click of

test 2

Click of

test 3

Figure 3: DOM event dependencies for the example in Figure 2.
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Figure 4: Event sequences explored by ARTEMIS for Figure 2.

of test4 does not have a DOM event dependency with any DOM

event. Any permutation of events involving test4 is redundant,

e.g.: test1→ test4→ test3 leads to the same behavior as test1

→ test3→ test4 and therefore only one needs to be tested.

Using newly computed DOM event dependencies in ARTEMIS

allows redundant test sequences to be pruned away. We will explain

the detailed redundancy-pruning algorithm in Section 5, but for

now, it suffices to say that permutations involving two independent

event handlers can safely be ignored without affecting the explo-

ration capability of the tool. After such reduction, the new search

tree, shown in Figure 4 (b), is significantly smaller. Here, grayed-

out edges are those deemed redundant and therefore are skipped.

For example, the onclick event of test1 is not dependent with itself

as seen in the dependency relation in Figure 3. So, executing the

onclick event of test1 after another onclick event of test1 does

not alter the program’s state and therefore can be skipped. Simi-

larly, test1 → test4 → test3 is skipped because an equivalent

sequence, test1→ test3→ test4, has already been tested.

Also note that exploring all test sequences up to the depth 3 does

not guarantee to cover all statements in this program. Indeed, only

the first branch of the function makeSomeNoise() in Figure 2 (Line

9) can be executed; sequences of only length three are not long

enough to increment x above 2 while also registering and executing

the handler associated with test3. Fully covering all the statements,

in this case, requires at least a sequence of length 15: That is, test1

→ test3→ test2→ test2→ test3→ test2→ test2→ test3→

test2→ test2→ test3→ test2→ test2→ test3→ test4.

Since we need to test up to depth 15 for full statement coverage,

the default search algorithm in ARTEMIS may explore more than

31+ · · ·+315 = 21, 523, 359 sequences. In contrast, with our new

pruning technique, complete statement coverage can be achieved

by exploring at most 60 sequences. We ran ARTEMIS with our new

improvement on this example and reached 100% coverage in only

0.37 seconds. The original version of ARTEMIS could not reach

100% coverage after 10 minutes.

In the remainder of this paper, we present the detailed algorithm

of our new DOM event dependency analysis.
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3. PRELIMINARIES
In this section, we introduce the fundamental concepts and nota-

tions for our work.

3.1 Web Applications
Client-side web applications are executed by the web browser,

which loads and parses the HTML/JavaScript files, represents them

as a DOM tree, and then executes the JavaScript code. Each node in

the DOM tree represents an object on the web page, or a JavaScript

code block to be executed immediately after parsing. Each object

may also be associated with a set of events initiated either by the

user or by the browser, such as onload and onclick. These events

are responded to by a set of JavaScript functions called event han-

dlers. For example, when a user clicks a button, the callback func-

tion associated with the onclick event will be executed. Callback

functions may be registered statically inside the HTML file or dy-

namically inside the JavaScript code. Although the browser ensures

that each callback function is executed atomically, i.e., in a single-

threaded fashion, the execution of multiple callback functions may

interleave; this makes the execution of the entire web application

nondeterministic.

3.2 JavaScript Statements
Let St be the set of JavaScript statements. Following the nota-

tion of Guarnieri and Livshits [14], we define the syntax of each
statement st ∈ St as follows.

st ::= ǫ | [empty]
st1; st2 | [sequence]
v = new v0(v1, . . . , vn) | [constructor]
v1 = v2 | [assignment]
v1 = v2.f | [load]
v1.f = v2 | [store]
m = function (v1, . . . , vn) {st ; } | [functionDecl]
v = m(v1, . . . , vn) | [functionCall]
return v | [return]

Each statement st is either empty, an elementary statement, or a

sequence of statements of the form st1; st2. An elementary state-

ment can be an object construction, where v0 is a constructor and

v1, . . . , vn are its arguments; an assignment; a load of the object

field v2.f ; a store to the object field v1.f ; a definition of a function;

a call to a function; or a return from a function. Other complex

statements may be transformed into a sequence of equivalent state-

ments through preprocessing prior to applying our analysis.

3.3 Points-to Analysis
Points-to analysis is the process of determining whether a refer-

ence variable v ∈ V can point to o ∈ O, a JavaScript object or

HTML DOM element. As in the literature [36], we use V to de-

note the set of all reference variables defined in the program, O to

denote the set of objects created at the set L of allocation sites, and

F to denote the set of object fields. For each site li ∈ L, we map

all objects created at li to a single abstract object oi ∈ O. The

points-to relation, denoted TptsTo , consists of a set of pairs of the

form (v, oi), meaning the reference variable v ∈ V points to the

object oi ∈ O, and of the form (oi.f, oj), meaning the field f ∈ F
of the object oi ∈ O points to the object oj ∈ O.

We define an abstract transformer for each st ∈ St as a function

fptsTo : TptsTo × St → TptsTo , which takes a points-to relation

T ⊆ TptsTo as input and returns a new points-to relation T ′ ⊆
TptsTo as output. For brevity, we provide definitions only for the

following statements:

• Allocation: l = new c

• Assignment: l = r

• Store: l.f = r

• Load: l = r.f

For each of the above statements, the new points-to relation T ′ is

defined with respect to the old points-to relation T as follows:

• Allocation: T ′ = T ∪ {(l, oi)}
• Assignment: T ′ = T ∪ {(l, oi) | (r, oi) ∈ T}
• Store: T ′ = T ∪ {(oi.f, oj) | (l, oi) ∈ T and (r, oj) ∈ T}
• Load: T ′ = T ∪ {(l, oi) | (r, oj) ∈ T and (oj .f, oi) ∈ T}

For an allocation, we add (l, oi) to the points-to relation. For an

assignment, if the pair (r, oi) is already in the points-to relation, we

add (l, oi) as well. For a store and a load, the abstract transformers

are defined similarly.

3.4 Call-graph Construction
Although many of the function calls in JavaScript code can be

resolved to a unique target function at the time of the static analysis,

there are cases where the resolution has to be carried out at run time.

In such cases, our analysis over-approximates the set of functions

that may be called. We leverage the result of our points-to analysis

to determine which function may be invoked. Specifically, consider

the statement l = v0.m(v1,...,vn), where v0 ∈ R is a reference

variable, m ∈ F is the field name, and v1, . . . , vn ∈ V are the

actual parameters of the function call.

Let mi(p0, p1, . . . , pn, retj) be a function that v0.m may point

to, where p0 refers back to the object, ret j refers to the return value,

and p1, . . . , pn are the formal parameters. For each object that v0
may point to, denoted (v0, o0) ∈ T , and for each function that

o0.m may point to, denoted (o0.m,mi) ∈ T , we transform the

function call to the following statements:

• p1 = v1, . . ., pn = vn;

• executing the code in mi(); and

• l = retj .

The abstract transformer for the function call is defined as follows:

T ′ = T ∪ { (p0, o0), (p1, o1), . . . , (pn, on), (l, oj) }, such that

(v1, o1) ∈ T , . . ., (vn, on) ∈ T , and (retj, oj) ∈ T .

3.5 Dependency Relations
For each statement st ∈ St , let VRD (st) be the set of memory

locations read by st , and VWR(st) be the set of memory locations

written to by st . We define the traditional control and data depen-

dency relations [12] as follows: a data dependency, →data , exists

between st1, st2 ∈ St if st1 is a write to some variable x and st2 is

a read of x. That is, (st1, st2) ∈→data if VWR(st1)∩VRD(st2) 6=
∅. A control dependency,→ctrl , exists between st1, st2 ∈ St if st1
is a branch statement, st2 is another statement, and the evaluation

of the predicate p in st1 determines the execution of st2.

Since each JavaScript code block is executed atomically, we are

concerned with the dependency relations between code blocks as

opposed to individual statements. Let m1 and m2 be two JavaScript

functions. We say (m1,m2) ∈→ctrl if executing m1 may affect

the control flow of m2; that is, there exists st1 ∈ m1 and st2 ∈ m2

such that (st1, st2) ∈→ctrl . Similarly, we say (m1,m2) ∈→data

if (st1, st2) ∈→data .

The DOM event dependency relation, in contrast, is defined di-

rectly over events. Intuitively, if the execution of some callback

function m1 of the event ev1 affects the execution of some call-

back function m2 of the event ev2, there is a DOM event depen-

dency between ev1 and ev2. More so, m1 may affect m2 through

control/data dependencies; or, m1 may affect m2 by registering, re-

moving, or modifying the callback functions of event ev2, which

includes m2. This effect is unique to the event driven environment

of client-side web applications. Formally:

DEFINITION 1. Two events ev1, ev2 ∈ EV are in the DOM

event dependency relation, (ev1, ev2) ∈→DOM , if there exists a

callback function m1 of ev1 and a callback function m2 of ev2

such that,
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1 DomA.onclick(function() {

2 c = true;

3 });

4 DomB.onclick(function() {

5 if (c) {

6 statement1;

7 } else {

8 statement2;

9 }

10 });

Figure 5: Example: data/control dependencies in the DOM.

• either (m1,m2) ∈ (→data ∪ →ctrl)
∗, or

• executing m1 registers, removes, or modifies the handler m2.

Here, T ∗ denotes the transitive closure of a relation T .

Consider the code in Figure 5 as an example. There are two

functions registered as the onclick event handlers of DomA and DomB;

c is a global variable used in the two event handlers. Inside the

handler of DomA, there is an assignment to c. The value of c is

used as the predicate of a branch in the event handler of DomB. So,

clicking DomA affects the reachability of the statements guarded by

the branch if (c). Thus, DomB is DOM-event dependent on DomA.

4. CONSTRAINT-BASED DEPENDENCY

ANALYSIS
In this section, we present our static analysis algorithm for com-

puting DOM event dependencies.

4.1 Datalog-based Program Analysis
We follow the declarative program analysis framework pioneered

by Whaley, Livshits, and Lam [25,28,42], where the analysis is rep-

resented by a Datalog program consisting of a set of facts and a set

of rules. The facts are relations that hold in the program, and the

rules specify the algorithm for deriving new relations from existing

relations. For example, the first two lines below show the two facts

describing a graph where n1 is the parent of n2, and n2 is the par-

ent of n3. The next two lines define the rules to infer the ancestor

relation: if X is the parent of Y , X is the ancestor of Y . Or if X is

the parent of Z and Z is the ancestor of Y , X is the ancestor of Y .

parent(n1,n2)

parent(n2,n3)

ancestor(X,Y) ← parent(X,Y)

ancestor(X,Y) ← parent(X,Z),ancestor(Z,Y)

A Datalog engine takes the program above as input and computes

the ancestor relation. Internally, it repeatedly applies the rules over

the facts until reaching a fix-point. Then, one may query the Data-

log engine to check, for example, if ancestor(n1,n3) holds.

4.2 Generating the Datalog Facts
We first normalize the JavaScript code to break down complex

statements into series of simpler statements by adding auxiliary

variables. Figure 6 shows an example of this. Then, we traverse

the control flow graph (CFG) of the simplified code and, for each

statement, generate its Datalog facts. Later on, these Datalog facts

are merged with a predefined set of Datalog rules that specify our

dependency analysis algorithm. Finally, we use a Datalog engine

to solve the program to obtain the analysis results.

The Datalog facts generated from the input program populate the

relations shown in Figure 7. The domains used in these relations

are as follows: V , the set of variables; St , the set of statement

IDs; O, the set of objects; F , the set of object fields; and E =
{load ,mouse, keyboard , timeout , ajax , other}, the set of event

handler types. Next, we provide examples on this process.

Chained statement Normalized form

var a =

document.images.length;

var temp0 = document.images;

var temp1 = temp0.length;

var a = temp1;

Figure 6: Example for JavaScript code normalization.

ASSIGN(v1 : V, v2 : V, st : St ) Variable Assignment: v1 = v2 with ID st

LOAD(v1 : V, v2 : V, f : F, st : St ) Object field load: v1 = v2.f with ID st

STORE(v1 : V, f : F, v2 : V, st : St ) Object field store: v1.f = v2 with ID st

FUNCDECL(v : V, o : O) v assigned function o: v =function(){. . .}

FORMAL(o : O, n : N, v : V ) v is the nth formal argument of function o

ACTUAL(st : St , n : N, v : V ) v is the nth argument in call-site at st

METHODRET(o : O, v : V ) v is the return value of function o
CALLRET(st : St , v : V ) Return into variable v at call-site st

STMT(st : St , o : O) st is a statement in function o
HEAP(v : V, o : O) Allocation of heap object o into variable v
PTSTO(v : V, o : O) Variable v points-to object o
DOM(o : O) o is a DOM object

DOM-MODIFY(o : O, e : E, f : O, st : St ) Attach function f to object o’s event e

Figure 7: The relations defined to specify our analysis.

Largely, the relations in Figure 7 correspond to various state-

ments in the program, e.g., assignments, loads, and stores. Each

statement then, for the most part, generates a corresponding input

fact. Specifically, every statement in the program is identified with

a unique ID st ∈ St . The formal arguments of a function are those

used within the function itself, e.g., for function f(a, b){...}, a

and b are the formal arguments. Given this function declaration,

if a, b ∈ V represent variables a and b and f ∈ O represents the

function f() then FORMAL(f, 1, a) and FORMAL(f, 2, b). At a

call-site, v = f(a1, b2), a1 and a2 are the actual arguments, e.g.,

ACTUAL(s, 1, a1) where s is the statement ID of the call-site and

a1 ∈ V represents the variable a1. The 0th actual argument is the

function object performing the call, e.g., ACTUAL(s, 0, f).
Continuing the example, assume the statement return r is the

return statement of the function f(). Let r ∈ V represent r then

METHODRET(f, r). Each call-site similarly has its own return

value from a function. Using the previous call-site and let v ∈ V
represent the variable v, then we have CALLRET(s, v).

Next, we present examples for generating facts about DOM ele-

ments and operations.

DOM References We model DOM elements as heap objects and

operations modifying DOM elements as those on heap objects. For

a DOM element od ∈ O, we add an implicit heap allocation and

the corresponding fact DOM(od) indicating that od is a DOM ob-

ject. We treat alternate methods to access the same DOM element

in a unified manner, e.g., a = document.getElementById(“model”)

and a = $("#model")[0] can be used to access the same element.

Let om ∈ O be the DOM element with ID “model”, vg ∈ V
be an auxiliary variable representing the value returned from the

getElementById() call at the call-site. Then, we have DOM(om),
and PTSTO(vg, om) indicating that the result of the call points-to

DOM object om. Furthermore, let a ∈ V be the variable storing the

returned value; we have ASSIGN(a, vg , s) where s is the statement

ID of the call. The use of $("#model")[0] can be handled similarly

with an auxiliary variable.

We also handle the various ways of accessing attributes of DOM

elements in the same way as reads/writes to objects. For example,

using a.setAttribute("value",x); y=a.getAttribute("value")

results in the facts: STORE(a, value , x) and LOAD(y, a, value).

DOM Listeners Prior works on statically analyzing JavaScript of-

ten do not accurately model the dynamic registration, triggering,

and removal of event handlers. For example, Jensen et al. [20] ab-
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stract away the information on where in the DOM tree an event

handler is registered. Furthermore, they assumed that load han-

dlers always executed before other kinds of handlers; this may not

be true. In contrast, we model such information more accurately.

We distinguish the different event categories: load, keyboard,

mouse, timeout, ajax, and other. These correspond to event at-

tributes such as onkeydown and onclick. We model both the static

and the dynamic methods for registering and removing event han-

dlers. For example, <obj id="a1" onclick=”scrpt”> statically in-

stalls the callback function scrpt to the onclick event of the DOM

object a1. In contrast, one may dynamically modify a callback func-

tion using an explicit store, tmp.onclick = scrpt, or using an API,

tmp.addEventListener(“click”, scrpt). In all three cases, we

generate the same fact: DOM-MODIFY(oe, mouse , os , st ) where

oe ∈ O is the DOM element a1, mouse ∈ E the type of event,

os ∈ O the scrpt function, and st the ID of the statement.

Timer related DOM APIs call functions after durations of time,

e.g., setTimeOut(func, t) calls func after time t. We model timers

with a DOM element ot ∈ O with event type timeout . The pre-

vious setTimeOut() becomes DOM-MODIFY(ot, timeout , of , st)
where of is the object representing func, and st the statement ID.

Removing DOM event handers also uses DOM-MODIFY. Con-

sider o.removeEventListener("click",f), which removes f from

o’s "click" event. We model it as DOM-MODIFY(o,mouse , f, s)
where o ∈ O is the object representing o, f representing f, and

s representing the statement ID. Essentially, the act of removing

an event handler f may effect any of the event handlers which f

may effect; this is the same as if f were installed, or removed. We

provide more examples shortly in the next sub-section.

As seen in the previous examples, generating the input set of

Datalog facts amounts to traversing each statement in the CFG and

generating its corresponding fact. Thus, it is a linear-time process.

Our modeling of global objects, and the DOM elements in partic-

ular, is analogous to using a single global object and then modeling

all reads/writes to JavaScript globals as loads and stores of fields of

this global object.

DOM Aliasing There are three ways of handling DOM node alias-

ing: over-approximation, under-approximation, and precise mod-

eling. Since precise modeling is expensive, we omit it from the

discussion. Below is a summary of the other two approaches:

• To over-approximate aliasing, the simplest approach is to treat

all elements in the DOM as a single abstract object [14, 15]. That

is, reading from or writing to one DOM element will be regarded

as potentially reading from or writing to any DOM element. A

more accurate over-approximation is to group all DOM elements

of the same type as a single abstract object [20]. That is, reading

from or writing to an integer variable will be regarded as potentially

reading from or writing to any integer variable. However, it will be

distinguished from a non-integer variable.

• To under-approximate aliasing, the simplest approach is to as-

sume that each access (read/write) is on a separate object [2]. That

is, one can pretend that dependencies through the DOM don’t exist.

These approaches represent two extreme cases, and therefore

may not be accurate enough, but have the advantage of being scal-

able in practice. In this work, we focus on a conservative static

analysis that uses the over-approximation.

4.3 Generating the Datalog Rules
Next, we introduce the rules that specify our DOM dependency

analysis. They use the existing facts to infer new relationships. For

ease of understanding, we divide these rules into two subsets. The

first subset is for the points-to analysis, and the second subset is

for the dependency analysis. These analyses are interleaved in our

implementation.

4.3.1 Rules for the Points-To Analysis

Our rules for the points-to analysis are shown in Figure 8. They

implement a flow-insensitive and context-insensitive analysis fol-

lowing Guarnieri and Livshits [14]. The main difference is that we

encode the locations of assign, store, and load operations, which

will be crucial in computing the DOM event dependencies.

PTSTO(v1, o1) ← HEAP(v1, o1)

PTSTO(v1, o1) ← FUNCDECL(v1, o1)

PTSTO(v1, o1) ← PTSTO(v2, o1), ASSIGN(v1, v2, st)
HEAPPTSTO(o1, f , o2) ← STORE(v1, f , v2, st), PTSTO(v1, o1), PTSTO(v2, o2)

PTSTO(v1, o1) ← LOAD(v1, v2, f , st), PTSTO(v2, o2), HEAPPTSTO(o2, f , o1)

CALLS(o, st) ← ACTUAL(st, 0, v1), PTSTO(v1, o)

ASSIGN(v1, v2, st1) ← CALLS(o1, st1), FORMAL(o1, n1, v1), ACTUAL(st1, n1, v2)

ASSIGN(v1, v2, st1) ← CALLS(o1, st1), METHODRET(o1, v2), CALLRET(st1, v1)

Figure 8: Datalog rules for specifying the points-to analysis.

Based on the points-to analysis, we can proceed to compute the

dependency relations between operations on the DOM elements,

including DOM reference, DOM read, and DOM write operations.

4.3.2 Rules for the Dependency Analysis

First, we compute the traditional data dependency relation as in

Figure 9. Here, v1, v2 ∈ V are reference variables, st1, st2 ∈ St

are statement IDs, and o1, o2, o3, f ∈ O are heap objects.

WRITE1(v1, st1) ← ASSIGN(v1, v2, st1)

WRITE1(v1, st1) ← LOAD(v1, v2, f , st1)

WRITE2(v1, f , st1) ← STORE(v1, f , v2, st1)

READ1(v2, st1) ← ASSIGN(v1, v2, st1)

READ1(v2, st1) ← STORE(v1, f , v2, st1)

READ2(v2, f , st1) ← LOAD(v1, v2, f , st1)

DATA-DEP(st1, st2) ← READ1(v1, st2), WRITE1(v1, st1)

DATA-DEP(st1, st2) ← READ2(v1, f , st2), WRITE1(v1, st1)

DATA-DEP(st1, st2) ← READ1(v1, st2), WRITE2(v2, f , st1)

PTSTO(v1, o1), PTSTO(v2, o1)

DATA-DEP(st1, st2) ← READ2(v1, f , st2), WRITE2(v2, f , st1)

PTSTO(v1, o1), PTSTO(v2, o1)

DATA-DEP(st1, st3) ← DATA-DEP(st1, st2), DATA-DEP(st2, st3)

CALL-EDGE(o2, o1) ← CALLS(o1, st1), STMT(st1, o2)
CALL-EDGE(o1, o3) ← CALL-EDGE(o1, o2), CALL-EDGE(o2, o3)

Figure 9: Datalog rules for the data dependency analysis.

To model the DATA-DEP relation, we use auxiliary relations

WRITE1, WRITE2, READ1, READ2 to represent the writes and

reads of variables/fields of objects. They correspond to the first six

rules of Figure 9. Given the auxiliary read and write relations, we

consider two statements to be data dependent, DATA-DEP(st1, st2),
if there is a read at st2 and a write to the same variable(s) at st1.

The first two rules are for data dependencies through variables; the

next two rules are for data-dependencies through aliasing objects;

and the fifth rule is for the transitivity of data-dependencies.

For two functions o1, o2 ∈ O, CALL-EDGE(o2, o1) if the func-

tion o1 is called in function o2; this is specified in the second to last

rule in Figure 9. The last rule says that the relation is transitive – it

represents edges in the call-graph.

To compute the control dependencies, we implement the algo-

rithm of Cytron et al. [9] on the JavaScript CFG to generate the

CTRL-DEP(st1, st2) relation, meaning that st2 is control-dependent

on st1. The corresponding Datalog rules are omitted for brevity.

Figure 10 shows the rules for computing the DOM event de-

pendency relation. Here, m1,m2,m3 ∈ O are function objects,

o1, o2 ∈ O are DOM objects, st1, st2 ∈ St are statement IDs, and

e1, e2 ∈ E are DOM event types. First, we create the program-

dependence relation [12], PROG-DEP, i.e., the transitive closure of

the control- and data-dependencies. Then, we leverage PROG-DEP

to create the FUNC-DEP relation representing dependencies across

452



PROG-DEP(st1, st2) ← DATA-DEP(st1, st2)

PROG-DEP(st1, st2) ← CTRL-DEP(st1, st2)

PROG-DEP(st1, st3) ← PROG-DEP(st1, st2)

PROG-DEP(st2, st3)

FUNC-DEP(m1, m2) ← PROG-DEP(st1, st2)

STMT(st1, m1)

STMT(st2, m2)

DOM-PROG-DEP(o1, e1, o2, e2) ← DOM-MODIFY(o1, e1, m1, st1)

DOM-MODIFY(o2, e2, m2, st2)

FUNC-DEP(m1, m2)

DOM-MODIFY-DEP(o1, e1, o2, e2) ← DOM-MODIFY(o1, e1,m1, st1)

DOM-MODIFY(o2, e2,m2, st2)

STMT(st2,m1)

DOM-MODIFY-DEP(o1, e1, o2, e2) ← DOM-MODIFY(o1, e1, m1, st1)

CALL-EDGE(m1, m3)

DOM-MODIFY(o2, e2, m2, st2)

STMT(st2, m3)

DOM-DEP(o1, e1, o2, e2) ← DOM-MODIFY-DEP(o1, e1, o2, e2)

DOM-DEP(o1, e1, o2, e2) ← DOM-PROG-DEP(o1, e1, o2, e2)

Figure 10: Datalog rules for the DOM dependency analysis.

functions. Finally, we consider the two cases for DOM event depen-

dencies: those through program dependencies, and those involving

event handler modifications.

The relation DOM-PROG-DEP captures the first case, where a

program-dependency exists between two functions called from the

DOM event handlers. Specifically, let two DOM objects o1, o2 ∈
O have event handlers m1 and m2 attached to their events of type

e1 and e2, respectively. If m2 is dependent on m1, we say that

DOM-PROG-DEP(o1, e1, o2, e1), i.e., there is a DOM event depen-

dency between o2’s handler of type e2 and o1’s handler of type e1.

The relation DOM-MODIFY-DEP captures the second case, when

the event handler of one DOM object installs/removes/modifies the

event handler of another DOM object. The first DOM-MODIFY-

DEP rule captures the simplest case: there is a function m1 which

is an associated event handler of DOM object o1’s event of type

e1. Also, there is a DOM event handler add/remove/modification

at statement st2 where st2 is in function m1. Because there is a

DOM modification of o2’s event e2 in m1 (at statement st2) we say

that o2’s event e2 is dependent on o1’s event e1: DOM-MODIFY-

DEP(o1, e1, o2, e2).

The next DOM-MODIFY-DEP rule is similar but captures the

case where a DOM event handler calls a function that modifies

a DOM object’s event handler. Specifically, there is a function

m1 registered to DOM object o1’s event e1, and there is a call

from m1 to some function m3, which has a DOM modification

of object o2’s event e2 at statement st2. Since m1 transitively

affects DOM object o2’s event e2 through m3, we say: DOM-

MODIFY-DEP(o1, e1, o2, e2). Recall that CALL-EDGE is defined

as the transitive closure of function calls; it captures some DOM

event-handler calling an arbitrary sequence of function calls lead-

ing to a DOM modification.

Finally, the DOM event dependency relation, DOM-DEP, is the

combination of DOM-PROG-DEP and DOM-MODIFY-DEP.

Since we focus on the over-approximated analysis, we deal with

event propagations (capturing and bubbling) and AJAX callbacks

conservatively. Recall that how the web browser propagate events

through the HTML DOM tree may affect the control flow of the

JavaScript code in a web application. When capturing is enabled,

the parent element captures the event first and then passes it down

to the children. In contrast, when bubbling is enabled, the target

element captures the event first before passing it up to the parent el-

ements. For efficiency reasons, distinguishing these two cases in a

static analysis is difficult. Therefore, we conservatively assume that

all JavaScript functions in the application may be executed in any

order. This approximation also works for modeling the execution

of asynchronous callbacks of the AJAX requests.

5. IMPROVING AUTOMATED TESTING
In this section, we leverage the static DOM event dependency

analysis to improve ARTEMIS [5], a popular automated tester of

client-side web applications. Since ARTEMIS generates event se-

quences randomly (like RANDOOP [34]), it often lacks the abil-

ity to reach high statement coverage. During our experiments, for

example, the default algorithm in ARTEMIS could not reach more

than 65% coverage even after 500 iterations. In contrast, leverag-

ing our static DOM event dependency analysis enabled ARTEMIS

to quickly reach 80% coverage.

5.1 The Default Algorithm of Artemis
Algorithm 1 shows the default test input generation procedure in

ARTEMIS. It takes the initial test 〈u0, S0, ρ0〉 as input and returns a

set Results of explored tests as output. Here, a test input is defined

as a tuple 〈u, S0, ρ〉 where u is the URL of the web page, S0 is the

initial state of the application, and ρ = ev1 . . . evn is a sequence

of events. An event ev = 〈param, state , env〉 captures not only

activities performed by the user, but also timer responses and AJAX

callbacks. Here, param denotes the values of the event parameters,

state denotes the values of the HTML form fields, and env denotes

the values of environment parameters, such as the window size and

time of day. Line 18 shows our new pruning method: leveraging

the DOM event dependencies to skip redundant sequences.

Algorithm 1 Test sequence generation algorithm in ARTEMIS.

Initially: Worklist := { }; run ARTEMIS(u0 , S0, ρ0).

1: ARTEMIS(URL u0, State S0, Sequence ρ0) {
2: Results := { };
3: Worklist := {〈u0, S0, ρ0〉};
4: while (Worklist 6= ∅ and ¬timeout and ¬maxruns)
5: c = 〈u, S, ρ〉 = Worklist.removeNext();

6: S′ := EXECUTEAPPLICATION(c);
7: Results := Results ∪ {(c, S′)};
8: //make test inputs by modifying the last event in ρ
9: foreach (variant ev′

n of evn in ρ = ev1 . . . evn) {

10: ρ′ := ev1 . . . evn−1 · ev
′

n;

11: Worklist := Worklist ∪ {〈u, S, ρ′〉}
12: }
13: //make test inputs by extending ρ with a new event
14: if (S′ 6∈ V isitedStates) {
15: V isitedStates.add(S′);

16: foreach (ev′

n+1 enabled at S′) {

17: ρ′′ := ρ · ev′

n+1;

18: if (¬ ISREDUNDANT(u, S, ρ′′))
19: Worklist := Worklist ∪ {〈u, S, ρ′′〉}
20: }
21: }
22: }
23: return Results;
24: }

ARTEMIS starts with an empty set Results of tests and a work-

list consisting of only 〈u0, S0, ρ0〉. Then, it loads the web page

from u0 with initial state S0 and executes the sequence ρ0 of events.

Let S′ be the application state after applying these events. Next, it

generates new event sequences using one of the following methods.

The first method is to generate a variant ev ′

n of the last event evn

in the sequence ρ = ev1 . . . evn; this creates a new sequence ρ′ =
ev1 . . . evn−1ev

′

n (Lines 8–12). In this case, ev ′

n = 〈param ′,
state ′, env ′〉 will have the same event type as evn but different

values for the event parameters, form fields, and environmental pa-

rameters; meaning ρ′ may lead to a different program state.

The second method for generating a new event sequence is to ap-

pend a new event evn+1 to the end of ρ to create the new sequence

ρ′′ (Lines 13–21). In this case, the main problem is that the de-

fault algorithm in ARTEMIS never checks whether ρ′′ is redundant,

i.e., whether ρ′′ is equivalent to some event sequence(s) that have
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already been explored. In contrast, our new method will perform

such a check. As shown in Line 18, if ρ′′ is proved to be redundant

by this newly added check, it will not be added to Worklist .

5.2 Pruning Redundant Event Sequences
Algorithm 2 shows the pseudocode of ISREDUNDANT() used at

Line 18 in Algorithm 1. Inside ISREDUNDANT(), the theoretical

foundation for deciding whether ρ′′ is redundant is partial order

reduction (POR [13,23,43]). We say that two sequences ρ1 and ρ2
are equivalent if we can transform one sequence into the other by

repeatedly swapping adjacent and independent events. Two events

ev1 and ev2 are adjacent if they occur consecutively. They are

dependent if the two events access the same object and at least one

of them is a write (modifying the content of the object); we say they

are independent if the two events are not dependent on each other.

Algorithm 2 Checking if the sequence ρ is redundant.

1: ISREDUNDANT(URL u, State S, Sequence ρ) { //Default in Artemis
2: return false;
3: }
4: ISREDUNDANT(URL u, State S, Sequence ρ) { //Our New Method
5: Let ρ = ev1 . . . evn · evn+1;

6: if (evn 6→DOM evn+1 ∧ evn+1 6→DOM evn ∧ evn 6≤lex evn+1)
7: return true;
8: return false;
9: }

Consider ρ1 = ev1 . . . ev iev j . . . evn, where ev i and ev j are

independent. Since swapping the order of ev i and ev j does not

change the behavior of the application (they are commutative), we

know ρ2 = ev1 . . . ev jev i . . . evn triggers the same behavior as

ρ1. Therefore, ρ1 and ρ2 are equivalent. During testing, if ARTE-

MIS has already explored ρ1, then we can safely skip ρ2, since it

suffices to test one representative from each equivalence class of

sequences.

In Algorithm 2, the pruning of equivalent sequences is imple-

mented using a form of the sleep-set based reduction [21, 40]. To-

ward this end, we assign the events of the application a lexical order,

<lex . When two adjacent events evn and evn+1 satisfy the follow-

ing conditions:

• (1) (evn 6→DOM evn+1)∧ (evn+1 6→DOM evn), meaning

they are independent with each other, and

• (2) evn <lex evn+1,

we choose to explore the sequence . . . evn+1evn . . . while skip-

ping the sequence . . . evnevn+1 . . .. As shown in Line 6 of Algo-

rithm 2, we use the result of our DOM event dependency analysis

to check whether the two events are independent from each other.

5.3 The Running Example
Consider the application in Figure 2, whose DOM event depen-

dencies are shown in Figure 3. Since the click event of test1 is

independent with itself, we skip the test sequence test1 → test1

. . . as shown by the gray path on the left side of Figure 4 (b). Also,

since the click event of test1 is independent with the click of test2,

we explore test1 → test2 but skip test2 → test1; we also skip

the subsequence test2 → test1 → test2. Similarly, we skip all

the other gray sequences in Figure 4 (b). Therefore, up to depth

3, our new method can reduce the total number of test sequences

generated by ARTEMIS from 49 down to 14.

6. EXPERIMENTS
We implemented the new dependency analysis in a software tool

named JSDEP. It uses ESPRIMA for parsing and normalizing the

JavaScript code, JS-WALA for constructing the control flow graph,

and the µZ fix-point engine [17] in Z3 [10] for solving the Datalog

Table 1: Results of the static DOM-event dependency analysis.

Name LOC Total Deps. Calculated Deps. Constraints Time (s)

case1 59 16 2 166 0.11

case2 72 16 3 187 0.11

case3 165 36 6 517 0.15

case4 196 64 8 618 0.16

frog 567 361 264 2,398 4.34

cosmos 363 169 144 1,000 0.20

hanoi 246 576 324 1,026 0.23

flipflop 525 36 25 2,445 0.34

sokoban 3,056 361 256 2,116 0.35

wormy 570 81 64 3,683 0.42

chinabox 338 49 16 1,281 0.63

3dmodel 5,414 25 19 3,813 13.83

cubuild 1,014 36 25 5,684 6.83

pearlski 960 144 100 4,129 7.17

speedyeater 784 361 64 4,170 0.61

gallony 300 196 72 1,372 0.25

fullhouse 528 64 49 1,007 0.20

ball_pool 1,745 81 30 1,709 0.28

lady 820 121 81 4,564 7.88

harehound 468 529 168 1,976 1.53

match 369 576 400 6,385 4.49

Total 18,559 3,898 2,120 50,246 50.11

program. To demonstrate the usefulness of the analysis we applied

it to improve the performance of ARTEMIS [5], a state-of-the-art

web application testing tool.

Our experiments were designed to answer two questions:

• Can JSDEP compute the DOM event dependency relations

with reasonable accuracy at negligible run-time cost?

• Can JSDEP help ARTEMIS reach a higher testing coverage

than the default algorithm?

We evaluated JSDEP on a number of client-side web applications.

Our benchmarks fall into two groups. The first are four variants of

Figure 2, case1 to case4, with four to eight buttons. The second are

seventeen real web applications, ranging from hundreds to thou-

sands of lines of code. Two are from ARTEMIS’s benchmarks [5]

(ball_pool and 3dmodel). The rest are JavaScript-based games [1].

In total, there are 21 benchmark applications with 18,559 lines of

code total. We ran all experiments on a computer with an Intel

Quad-Core i5-4440 3.10 GHz CPU with 12 GB of RAM.

6.1 Results: Dependency Analysis
Table 1 shows the result of the static DOM event dependency

analysis. Columns 1–2 show the name of the benchmark program

and the number of lines of code. Column 3 shows the maximum

number of possible DOM event dependencies, i.e., N2 where N is

the number of DOM events in the application. Conceptually, this is

the dependency relation used by default in ARTEMIS: every DOM

event is dependent on every DOM event. Column 4, in contrast,

shows the number of DOM event dependencies found by our analy-

sis. Columns 5–6 show the statistics of our analysis: the size of the

Datalog program, and the time spent on the analysis. The time in-

cludes parsing, normalizing, and transforming the code, generating

the Datalog program, and calling µZ to solve the program.

Overall, our analysis can very quickly generate DOM event de-

pendency results: the time ranges from 0.5 to 13 seconds. The total

time spent on analyzing the 21 benchmarks is less than 1 minute.

Also, the results are much better than the theoretical worst case.

Next, we show our analysis results are useful: they can significantly

improve the performance of ARTEMIS.

6.2 Results: Improving Artemis
Table 2 shows the results of running ARTEMIS with and with-

out leveraging JSDEP. Column 1 shows the benchmark’s name.

Columns 2–4 show statement coverage after running ARTEMIS and
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ARTEMIS+JSDEP for 100 iterations. Columns 5–7, 8–10, 11–13,

and 14–16 show the statement coverages achieved by running them

up to 200, 300, 400, and 500 iterations, respectively. ARTEMIS

is the algorithm as described by Artzi et al. [5] with their best pri-

oritization technique enabled. Each iteration executes one test se-

quence, i.e., an iteration of the loop in Figure 1.

Overall, the statement coverage of ARTEMIS+JSDEP is 10–16%

higher than ARTEMIS. For case1 and case2, in particular, the de-

fault ARTEMIS algorithm cannot reach 100% coverage even after

500 iterations. ARTEMIS+JSDEP can reach 100% coverage within

only 100 iterations. Furthermore, as the number of iterations in-

creases the average coverage of ARTEMIS remains stuck at 65%.

But, the average coverage of ARTEMIS+JSDEP keeps increasing.

This is because the default algorithm of ARTEMIS explores many

redundant test sequences. Our static analysis results are accurate

enough to skip many of these sequences and focus on useful tests.

There are some cases where ARTEMIS+JSDEP temporarily had

lower coverage than ARTEMIS (e.g., match at 100 iterations). We

believe this is mainly due to the inherent randomness of selecting

items from the worklist. However, as the number of iterations in-

creases, ARTEMIS+JSDEP becomes much better.

6.3 Results: Redundancy Removal
Next, we investigated how many sequences ARTEMIS+JSDEP

deemed redundant. Table 3 summarizes the results. We ran each

benchmark for 500 iterations and counted both the number of se-

quences generated (Column 3) and the number of sequences we

found redundant (Column 4). Without using our method, all the

redundant sequences would have been added to the worklist. Over-

all, we reduce the number of sequences added to the worklist by

36% on average. Examining the dependency results (Table 1), we

can see our analysis actually finds 46% of the DOM events inde-

pendent on average. The difference in the number of reduced se-

quences and the actual number of independent DOM events comes

from the sleep-set approach of Algorithm 2: it does not guarantee

to test only one sequences from each equivalence class. This is a

limitation of our POR implementation and not the static analysis.

Note: Column 3 counts the total number of sequences added to the

worklist; only 500 of these were actually executed.

In addition to running ARTEMIS and ARTEMIS+JSDEP for a

fixed number of iterations we also ran them for a fixed amount

of time. Table 4 shows the result. Here, Columns 1–2 show the

benchmark name and execution time. Columns 3–4 show the num-

ber of iterations and statement coverage obtained by ARTEMIS.

Columns 5–6 show the number of iterations and statement cover-

age obtained by ARTEMIS+JSDEP.

The runtime here, and in all tests, includes the static analysis

overhead and the overhead in ARTEMIS to perform the dependency

check. So, ARTEMIS+JSDEP explores slightly fewer (92%) itera-

tions on average within the 10 minute bound. Also, the number

of iterations explored within the bound depends on the length of

the tested sequences; this depends on the length of the sequences

skipped. But, we still see a significant increase in the average of

the statement coverage: from 67% achieved by ARTEMIS to 80%

achieved by ARTEMIS+JSDEP. Overall, this indicates the default

ARTEMIS search strategy spends much time on redundant tests.

Threat to Validity. Although our static dependency analysis is de-

signed to be sound in the absence of JavaScript’s reflexive features,

there is no theoretical guarantee of its soundness. However, this

is consistent with the norm of the research field. As the authors

of [19, 35] have argued, due to the impact of JavaScript’s dynamic

features, it is impossible to develop a truly sound and, at the same

time, practically useful static analysis framework. Thus, in prac-

tice, software tools strive for achieving soundiness [27] as opposed

to achieving soundness. The goal is being as sound as possible with-

out significantly compromising precision and scalability. Since we

focus on improving the test coverage of ARTEMIS, as opposed to

proving properties, achieving soundiness is sufficient.

7. RELATED WORK
Datalog-based program analysis was pioneered by Whaley and

Lam [42]. They introduced a framework for implementing points-

to analyses as database queries [25]. Livshits and Lam [28] and

Naik et al. [32] used similar techniques in detecting security errors

and data-races. Bravenboer and Smaragdakis [6] also formulated a

points-to analysis as database queries. Kusano and Wang [24] used

Datalog engines to analyze interference in multithreaded programs.

However, these existing methods were all designed for analyzing

programs written in more static languages such as Java and C++.

Although there are works on applying Datalog-based program

analysis to JavaScript, none of them can handle DOM event depen-

dencies that are crucial for client-side web applications. Specif-

ically, Guarnieri and Livshits [14] implemented a Datalog-based

analysis procedure in the GATEKEEPER tool; but, the goal was

statically enforcing security policies. Zheng et al. [44] developed

a method for modeling AJAX APIs to check possible bugs when

there are asynchronous requests. Meyerovich and Livshits [31] also

developed a method for enforcing security policies in the browser.

Jensen et al. [20] proposed a type inference algorithm for JavaScript

based web applications, which tracks DOM elements and browser

APIs based on their IDs and types but did not compute the depen-

dency relations. Feldthaus et al. [11] proposed a method for con-

structing approximate call graphs but completely ignored their in-

teractions with the DOM. Madsen et al. [29] proposed a static anal-

ysis procedure that can infer the behavior of framework APIs but

it targeted JavaScript-based applications in Windows 8 only. Mad-

sen et al. [30] developed a static analysis procedure for the event-

driven Node.js applications but they were server-side applications

as opposed to client-side applications.

The methods proposed by Arlt et al. [4] and Cheng et al. [7] for

testing Java-based GUI applications are significantly different in

that they do not model the registration, modification, and removal

of event handlers (the focus of our work). Instead, they assumes

that all event handlers are pre-installed, and thus focuses on analyz-

ing only data dependencies between these handlers. This assump-

tion may be reasonable for some Java-based GUI frameworks, but

is not valid for JavaScript-based web applications.

There is also a large body of work on pointer analysis, flow anal-

ysis, and type inference for JavaScript, which are not based on Dat-

alog and are not designed specifically for analyzing interactions

with the HTML DOM. For example, Chugh et al. [8] proposed a

staged information flow analysis for JavaScript to detect certain se-

curity violations in client-side code. Sridharan et al. [39] proposed

a technique called correlation tracking to improve points-to analy-

sis. Guha et al. [15, 16] proposed a static flow analysis for detect-

ing AJAX intrusions, and typing local control and state. Wei and

Ryder [41] developed a set of blended analysis tools, using both

dynamic and static analyses to improve the points-to analysis. An-

dreasen and Møller [3] extended the TAJS analysis framework by

adding a static dataflow analysis to infer and exploit determinacy

information; this improves the type inference and call-graph con-

struction for JavaScript programs using jQuery. TAJS itself builds

upon the classic monotone framework of Kam and Ullman [22] us-

ing a specialized analysis lattice structure. Alimadadi et al. [2] de-

veloped a change impact analysis capturing the interplay between

the JavaScript code changes and the HTML DOM, but their method

is valid only for the given dynamic execution, whereas our method

is static and therefore valid for all possible executions.
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Table 2: Results of comparing ARTEMIS and ARTEMIS+JSDEP with a fixed number of iterations.

Artemis Art.+JSdep Artemis Artemis+JSdep Artemis Art.+JSdep Artemis Art.+JSdep Artemis Art.+JSdep

Name Iter. Cov.(%) Cov.(%) Iter. Cov.(%) Cov.(%) Iter. Cov.(%) Cov.(%) Iter. Cov.(%) Cov.(%) Iter. Cov.(%) Cov.(%)

case1 100 70.59 100 200 70.59 100 300 70.59 100 400 70.59 100 500 70.59 100

case2 100 43.90 100 200 43.90 100 300 43.90 100 400 43.90 100 500 43.90 100

case3 100 38.10 62.86 200 38.10 74.29 300 38.10 74.29 400 38.10 95.24 500 38.10 95.24

case4 100 47.12 59.62 200 47.12 72.12 300 47.12 72.12 400 47.12 72.12 500 47.12 72.12

frog 100 86.79 89.29 200 88.93 96.43 300 88.93 96.43 400 88.93 96.79 500 88.93 97.86

cosmos 100 57.48 72.44 200 57.48 77.17 300 57.48 77.17 400 57.48 77.95 500 57.48 77.95

hanoi 100 77.19 76.32 200 77.19 76.32 300 77.19 82.46 400 77.19 82.46 500 77.19 82.46

flipflop 100 97.05 95.94 200 97.05 97.05 300 97.05 97.05 400 97.05 97.05 500 97.05 97.05

sokoban 100 73.09 76.46 200 73.09 76.46 300 73.09 76.46 400 73.09 76.46 500 73.09 76.46

wormy 100 39.76 40.95 200 39.76 40.95 300 39.76 40.95 400 39.76 40.95 500 39.76 40.95

chinabox 100 79.88 82.32 200 79.88 83.54 300 79.88 84.15 400 79.88 84.15 500 79.88 84.15

3dmodel 100 64.01 71.50 200 64.01 71.50 300 64.01 71.50 400 64.01 71.98 500 64.01 71.98

cubuild 100 61.30 68.15 200 61.30 73.46 300 61.30 78.42 400 61.30 85.79 500 61.30 85.79

pearlski 100 52.52 52.72 200 52.52 53.72 300 52.52 53.72 400 52.52 53.92 500 52.52 56.54

speedyeater 100 45.93 46.41 200 45.93 53.11 300 45.93 53.35 400 45.93 53.35 500 45.93 54.78

gallony 100 69.86 93.15 200 69.86 94.52 300 69.86 94.52 400 69.86 94.52 500 69.86 94.52

fullhouse 100 77.38 83.33 200 77.38 83.33 300 77.38 83.33 400 77.38 87.50 500 77.38 87.50

ball_pool 100 71.43 89.75 200 73.16 91.24 300 73.16 93.09 400 73.16 93.43 500 73.16 93.43

lady 100 76.13 77.25 200 76.13 79.50 300 76.13 79.50 400 76.13 79.50 500 76.13 79.50

harehound 100 80.28 88.07 200 80.28 91.28 300 80.28 91.28 400 80.28 92.20 500 80.28 92.20

match 100 61.45 50.28 200 61.45 62.01 300 61.45 73.18 400 61.45 73.18 500 61.45 73.18

Average 100 65.29 75.08 200 65.48 78.47 300 65.48 79.66 400 65.48 81.35 500 65.48 81.60

Table 3: Results of blocked sequence ratio (step 500).

Name Iter. Redundancy Checked Redundancy Found Ratio (%)

case1 500 1,001 499 49.85

case2 500 1,832 1,326 72.38

case3 500 4,436 3,232 72.86

case4 500 4,009 2,976 74.23

frog 500 9,501 1,895 19.95

cosmos 500 6,501 500 7.69

hanoi 500 11,501 2,015 17.52

flipflop 500 9,001 8,145 90.49

sokoban 500 9,501 1,830 19.26

wormy 500 3,033 443 14.61

chinabox 500 3,501 1,709 48.81

3dmodel 500 2,949 708 24.01

cubuild 500 3,001 768 25.59

pearlski 500 6,001 749 12.48

speedyeater 500 12,501 1,848 14.78

gallony 500 7,001 3,393 48.46

fullhouse 500 14,001 499 3.56

ball_pool 500 4,501 2,206 49.01

lady 500 5,001 290 5.80

harehound 500 11,501 4,771 41.48

match 500 12,384 5,502 44.43

Average 6,793 2,157 36.05

In addition to improving the performance of ARTEMIS, the re-

sult of our static DOM event dependency analysis may be used

to improve a wide range of dynamic analysis tools. For exam-

ple, the SYMJS tool of Li et al. [26] relies on symbolic execution

to generate test inputs for JavaScript based web applications, but

does not leverage the result of any static dependency analysis pro-

cedure. The KUDZU tool of Saxena et al. [37] uses a virtual ma-

chine based symbolic execution procedure to analyze client-side

JavaScript code injection. The JALANGI tool developed by Sen et

al. [38] provides a generic framework for implementing dynamic

analysis techniques for JavaScript, e.g., concolic testing, but lacks

the capability of conducting static program analysis. Nguyen et

al. [33] proposed a delta-debugging based method for reducing the

redundant parts of a test case generated by a symbolic execution

tool. Jensen et al. [18] developed a stateless model checking tool

for systematic testing of event-driven applications with a fixed data

input. However, these methods focus on dynamic analysis, whereas

our work focuses on static analysis and therefore is complementary.

Table 4: Comparing ARTEMIS with ARTEMIS+JSDEP.

Artemis Artemis+JSdep

Name Time (s) Iter. Coverage (%) Iter. Coverage (%)

case1 600 5,819 70.59 1,972 100

case2 600 5,018 43.90 4,208 100

case3 600 4,292 38.10 7,090 100

case4 600 3,995 47.12 4,532 72.12

frog 600 1,656 88.21 96 84.64

cosmos 600 1,663 57.48 1,123 78.74

hanoi 600 2,782 77.19 1,884 82.46

flipflop 600 771 97.05 459 97.05

sokoban 600 1,225 73.09 264 76.68

wormy 600 1,179 52.23 538 40.95

chinabox 600 736 79.88 174 84.15
3dmodel 600 137 64.01 132 71.98

cubuild 600 661 61.30 242 75.51

pearlski 600 1,257 53.32 322 53.72

speedyeater 600 2,688 77.27 2,735 78.47

gallony 600 3,756 69.86 4,596 94.52

fullhouse 600 2,372 77.38 1,107 88.10

ball_pool 600 36 71.43 34 74.19

lady 600 64 75.90 55 76.58

harehound 600 2,383 80.28 2,305 94.50

match 600 2,462 62.01 7,444 73.18

Average 600 2,140 67.50 1,967 80.83

8. CONCLUSIONS
We have presented a constraint-based method for statically com-

puting DOM event dependencies in client-side web applications

by formulating the static analysis as a Datalog program. We have

also presented a method for leveraging the result of our dependency

analysis to improve the performance of a popular web application

testing tool named ARTEMIS. We have implemented our meth-

ods and evaluated them on real web applications. Our experiments

show that the new methods can compute DOM event dependencies

with reasonable accuracy and at a negligible cost. Furthermore,

they allow ARTEMIS to significantly reduce test sequence redun-

dancies and therefore improve the test coverage.
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10. ARTIFACT DESCRIPTION
Our artifact includes two parts: JSDEP, the new tool for static

DOM event dependency analysis, and the modified ARTEMIS for

automated testing of client-side web applications.

• The performance of JSDEP can be evaluated by applying it

to the JavaScript benchmarks included in the artifact. The

results have been shown in Table 1.

• The performance of ARTEMIS, with and without the perfor-

mance improvement provided by JSDEP, can be evaluated on

the web application benchmarks included in the artifact. The

results have been shown in Tables 2, 3 and 4.

• The artifact includes scripts for running the individual analy-

sis procedures provided by JSDEP and ARTEMIS, as well as

generating the experimental result tables.

• The artifact also includes the raw data of experiments that we

conducted to produce the result tables used in this paper.

The overall structure of the artifact is shown in Figure 11. Here, the

block labeled DOM Analysis refers to the static analysis performed

by JSDEP, and the block labeled Modified Artemis refers to the web

application testing tool.

Figure 11: Structure of the artifact.

The tools, benchmarks, and experimental data are publicly avail-

able. The URL is https://github.com/sch8906/JSdep.

10.1 Installation
JSDEP has been developed and tested on a popular Linux plat-

form: Ubuntu 12.04 Desktop 64-bit. Internally, JSDEP builds upon

Node.js and the Z3 SMT solver [10]. Therefore, prior to running

JSDEP, both Node.js and Z3 must be installed.

• To install Node.js in Ubuntu Linux, run sudo apt-get

install nodejs.

• To install the Z3 SMT solver, visit its official website and

follow the directions from there.

To install our modified version of ARTEMIS, please

• install all dependencies that ARTEMIS needs, based on the

README file provided, and then

• follow the directions provided in the INSTALL file under the

artemis-modified directory.

10.2 Evaluating the DOM Analysis
The JavaScript benchmarks included in the artifact are stored in a

set of subdirectories, one benchmark program per subdirectory. To

evaluate the DOM event dependency analysis on all benchmarks,

run the following script:

$ make build-dep-all

Alternatively, the dependency analysis may be evaluated on each

individual benchmark. Assume that the name of the benchmark is

prog; you may run the following script:

$ make build-dep prog

The result of our new dependency analysis tool, JSDEP, will be

stored in three files under the info subdirectory for each bench-

mark:

• dep.txt, which stores the dependency relations;

• numConstraints.txt, which stores the total number of

constraints, and

• z3.time, which stores the execution time.

10.3 Evaluating the Modified Artemis
To evaluate the modified ARTEMIS tool on all benchmarks, run

the following script:

$ make-run-artemis-all

Alternatively, ARTEMIS may be evaluated on each individual bench-

mark. Assume that the name of the benchmark is prog; you may

run the following script:

$ make-run-artemis prog

Internally, ARTEMIS uses the dep.txt file computed by JSDEP

for each benchmark to improve the testing performance. It stores

the final results in two plaintext files under the artemis-result

directory for each benchmark:

• old_artemis.stdout: output of the original ARTEMIS,

and

• new_artemis.stdout: output of the modified ARTEMIS.

10.4 Experimental Data
Our raw experimental data are stored in the directory named

raw-data. The data may be used to generate the result tables

used in this paper, by running the following three commands:

$ make table1

$ make table2

$ make table3

The above commands print the result tables in the LATEX format.

After obtaining new experimental data by re-running our tools,

the command make fetch-datamay be used to move the newly

created experimental data from the current benchmark directory to

the raw-data directory.

After that, the three aforementioned commands, make table1,

make table2 and make table3, may be used to process the

updated data and generate the new result tables.
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