
Towards Understanding and Fixing Upstream Merge
Induced Conflicts in Divergent Forks: An Industrial Case Study

Chungha Sung
University of Southern California

Los Angeles, CA, USA

Shuvendu K. Lahiri
Mike Kaufman

Pallavi Choudhury
Jessica Wolk

Microsoft Corporation
Redmond, WA, USA

Chao Wang
University of Southern California

Los Angeles, CA, USA

ABSTRACT
Divergent forks are a common practice in open-source software
development to perform long-term, independent and diverging de-
velopment on top of a popular source repository. However, keeping
such divergent downstream forks in sync with the upstream source
evolution poses engineering challenges in terms of frequent merge
conflicts. In this work, we conduct the first industrial case study of
frequent merges from upstream and the resulting merge conflicts,
in the context of Microsoft Edge development. The study consists
of two parts. First, we describe the nature of merge conflicts that
arise due to merges from upstream. Second, we investigate the fea-
sibility of automatically fixing a class of merge conflicts related to
build breaks that consume a significant amount of developer time to
root-cause and fix. Towards this end, we have implemented a tool
MrgBldBrkFixer and evaluate it on three months of real Microsoft
Edge Beta development data, and report encouraging results.

ACM Reference Format:
Chungha Sung, Shuvendu K. Lahiri, Mike Kaufman, Pallavi Choudhury,
Jessica Wolk, and Chao Wang. 2020. Towards Understanding and Fixing
Upstream Merge Induced Conflicts in Divergent Forks: An Industrial Case
Study. In 42nd International Conference on Software Engineering Companion
(ICSE ’20 Companion), October 5–11, 2020, Seoul, Republic of Korea. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3377812.3390800

1 INTRODUCTION
Divergent forks are a common practice in open-source development,
e.g., to provide customized products by adapting an open-source
project. Leveraging an upstream software that defines or adheres to
some standards (e.g., Android) allows the downstream software to
offer better application compatibility. As an example, web browsers
such as Opera, Samsung Internet, and Microsoft Edge build upon
the Chromium engine; similarly, customized versions of the An-
droid mobile operating system are offered by various smartphone
vendors, together with their own applications.

Unlike a branch that is often short-lived, a divergent fork may
live permanently along side the original project. However, flow of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390800

Upstream
(U)

Integration
(I)

Downstream
(D)

fork

Stabilization
(S)

Upstream commits merged

One cycle of merge

Figure 1: The branch structure of Microsoft Edge.

information between the original and forked repositories is asym-
metric. While most divergent forks need to continuously integrate
changes from the original repository, e.g., to keep up with impor-
tant security patches, changes from the forked repositories seldom
flow back into the original repository. To signify this asymmetric
nature, we refer to the original repository as the upstream and the
forked repository as the downstream.

Although popular and convenient, a divergent fork may incur
significant overhead. One challenge is to keep the downstream syn-
chronized with important updates in the upstream. As the upstream
software evolves due to API changes and security patches, the down-
stream needs to be updated accordingly. That is, the downstream
needs to perform amerge from the upstream. While merge conflicts
are not unique to divergent forks [1, 2], the cost of root-causing
and fixing the asymmetric upstream merge induced conflicts is sig-
nificantly higher, for three reasons: (1) Changes in the upstream
often occur without knowledge of the downstream development. (2)
Root-causing the upstream commit responsible for merge conflict,
especially build break, is non-trivial when the commit history of
the upstream consists of several thousand commits. (3) A merge
induced build break may also be caused by changes in the down-
stream, often made many commits earlier. This makes it difficult to
find the right developer to assign the fix.

2 STUDY OF UPSTREAMMERGE-INDUCED
CONFLICTS IN EDGE

In this section, we study the upstream merge-induced conflicts in
the context of Microsoft Edge development, a recent divergent fork
of Chromium.

Branch structure of Microsoft Edge. Figure 1 gives a sim-
plified branch structure in Microsoft Edge. Each horizontal line
represents one of the four branches: Upstream (U), Integration (I),

1

https://doi.org/10.1145/3377812.3390800
https://doi.org/10.1145/3377812.3390800

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea C. Sung, S. K. Lahiri, M. Kaufman, P. Choudhury, J. Wolk, and C. Wang

Table 1: List of resolution cases in upstream induced build
break.

Group Type of Resolution/Fixes
in Downstream

Possible (Example) Causes
from Upstream

1 Include Statement Update - File/Directory Name/Structure
is updated

2

Entire Function
Definition/Call Update
(e.g., function body
move/add/removal)

- Function definition (with body)
is added/removed

- Function definition (with body)
moved to different class/section
(e.g., public → private)

3 Function Name Update
- Function name is updated
- Entire function is removed
(e.g., function deprecation)

4 Function Type/Specifier Update
- Function definition type is updated
- Function definition specifier is
added/removed

5 Function Param/Arg Update
(e.g., param/arg add/rem/reorder)

- Function definition parameter
is added/removed/reordered

6 Function Param/Arg’s Type Update
(e.g., param/arg type update)

- Function definition param’s type
is updated

- Function definition param’s
specifier/modifier is added/removed

- Hierarchy/Name of Class/Namespace
/Enum definition is updated

7
Class/Namespace/Enum
Reference Update
(e.g., field type update)

- Hierarchy/Name of Class/Namespace
/Enum definition is updated

8 Uncategorized

Stabilization (S) and Downstream (D). Circles indicate commits
and an arrow points from a child to a parent commit. Here the
D branch denotes the master branch of Edge, and the U denotes the
Chromium master. D is created by the “fork”, and both branches
evolve independently.

Every cycle of merge, the downstream pulls the changes from
the upstream in two phases. First, textual (syntactic) conflicts are
resolved in the I branch after pulling the recent version of the
upstream. Then, any build errors (e.g., compiler errors) or test
failures are resolved in the S branch. Finally, the source code is
merged back to D master.

Merge Conflicts. We classify resolutions of the conflicts during
merges for three months from April to June in 2019, and there
are 2,218 commits to resolve all the merge induced conflicts. We
consider three types of conflicts: textual conflict, build break and test
failure. The number of fix commits for textual conflict is 1183, for
build breaks is 815, and for test failures is 220. And, we have studied
how build breaks are resolved and identified three categories: Fixes
of ill-formed files, Build script file fixes and Structural fixes in C++
files. Especially, we focus on Structural fixes in C++ files because,
among all classes of fix commits, developers found it to be the
most laborious to identify the root-cause and prepare the fix for
the downstream code.

Structural fixes in C++ files. Consider a method Foo that was
defined in the upstream. Then, the downstream created some new
call-sites for Foo. At some point, however, Foo was renamed to
Bar, a new parameter was added, and then all the call-sites were
properly changed in the upstream. When merging such a change
into the downstream, compilation will cause a build break due to
the missing symbolic link. During our study, we observe many
such conflicts. Furthermore, the root-cause is often not obvious to
downstream developers, and developers have to manually inspect

the upstream commits (which can be a few thousands), analyze the
change impact, and then create a suitable patch.

We further identify common sub-categories of the Structural fixes
in C++ files into eight groups as shown in Table 1.While the example
causes from the upstream are provided to help understand the
breaks, they are not meant to be exhaustive. Since the classification
is inherently manual, there exists a set of commits for which we
could not find the exact patterns with possible causes; therefore, it
is classified as Uncategorized (Group 8).

3 FEASIBILITY OF AUTOMATIC FIXES
To evaluate the feasibility of automated fixes of merge induced
build breaks, we develop a prototype tool named MrgBldBrkFixer.
Our preliminary targets are Group 3, 4, 6 and 7 from Table 1.

As shown in Figure 2, the input consists of (i) a set of upstream
commits,𝐶 , that constitutes the merge, and (ii) a build break error, 𝜖 ,
in a downstream C++ file 𝑓 . The output is the patched downstream
file 𝑓 ′ aimed to resolve the build break. Internally, there are four
steps: (1) Identify the symbol 𝜎 in 𝑓 that is responsible for the build
break error 𝜖 . (2) Prune the upstream commits in 𝐶 to remove the
ones not relevant to 𝜎 , to obtain 𝐶 ′ ⊆ 𝐶 . (3) Analyze changes to
definitions and uses (Defs and Uses) in the files modified in𝐶 ′ based
on AST-aware diffing results, to infer a set of possible renaming
patches, denoted Π. (4) For each patch 𝜋 ∈ Π, apply 𝜋 to the AST
node (in 𝑓) that contains 𝜎 , to obtain 𝑓 ′.

Using real development data of Microsoft Edge collected in a
three-month period, we perform a feasibility study and, the result
shows that 40% of the build breaks targeted byMrgBldBrkFixer can
be repaired automatically.

Downstream
Files (f)

Upstream Files

Previous
version

AST-Diff

Patch
Inference

Applying
Patches

Patched Files (f ')

ASTsRange of Upstream
Commits (C)

Upstream
Commit
Pruning

Build Break
Error (ε)

selected_index

Function

name
type

name

in

t

Current
version

selected_index

Function

name
type

name

in

t

Files to
be fixed selected_index

Function

name
type

name

i

ASTs

Figure 2: Overview of the automated patching.

4 CONCLUSIONS
We have presented the first industrial case study of upstream merge
induced conflicts in a divergent fork, namely the Microsoft Edge.
We identified structural fixes in source files, that require substantial
manual effort to root-cause and fix due to the scale of upstream com-
mits. We provided a simple analysis based on constructing a patch
for such conflicts, and our preliminary results are encouraging.

REFERENCES
[1] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. 2011. Proactive Detection of

Collaboration Conflicts. In ACM SIGSOFT Symposium on Foundations of Software
Engineering. 168–178.

[2] C. R. B. de Souza, D. Redmiles, and P. Dourish. 2003. "Breaking the Code", Moving
Between Private and Public Work in Collaborative Software Development. In
International ACM SIGGROUP Conference on Supporting Group Work. 105–114.

2

	Abstract
	1 Introduction
	2 Study of Upstream Merge-Induced Conflicts in Edge
	3 Feasibility of Automatic Fixes
	4 Conclusions
	References

