a2 United States Patent

US012348529B2

ao) Patent No.: US 12,348,529 B2

Rungta et al. 45) Date of Patent: Jul. 1, 2025
(54) AUTOMATED POLICY REFINER FOR 10,749,910 B1* 82020 Balber HO4L 63/205
CLOUD-BASED IDENTITY AND ACCESS 10,922,423 B1* 2/2021 Rungta GO6F 21/604
MANAGEMENT SYSTEMS 2014/0222866 Al* 82014 Joneja GO6F ?(1)/76;;5
*
(71) Applicant: Ama(zon)Technologies, Inc., Seattle, 202010336489 Al 10/?820(11ti\§1111§(81t) """"""""""" GOGF 21/45
WA (US
(72) Inventors: Neha Rungta, Seattle, WA (US); FOREIGN PATENT DOCUMENTS
Chungha Sung, Scattle, WA (US); EP 3567506 Al 11/2019
Amit Goel, Seattle, WA (US);
Zvonimir Rakamaric, Seattle, WA
(US); Loris D’Antoni, Seattle, WA OTHER PUBLICATIONS
(Us) International Search Report and Written Opinion, PCT App. No.
PCT/US2023/073986, Jan. 8, 2024, 13 pages.
(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US) . . .
Primary Examiner — Michael W Chao
(*) Notice: Subject to any disclaimer, the term of this ~ Assistant Examiner — Raghavender Cholleti
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Nicholson De Vos
U.S.C. 154(b) by 273 days. Webster & Elliott LLP
(21) Appl. No.: 17/957,904 (57) ABSTRACT
(22) Filed: Sep. 30, 2022 Techniques are described for providing a policy refiner
application used to analyze and recommend modifications to
(65) Prior Publication Data identity and access management policies created by users of
US 2024/0114035 Al Apr. 4, 2024 a cloud provider network (e.g., to move the policies toward
least-privilege permissions). A policy refiner application
(51) Imt. CL receives as input a policy to analyze, and a log of events
HO4L 9/40 (2022.01) related to activity associated with one or more accounts of
(52) US.CL a cloud provider network. The policy refiner application can
CPC ... HO4L 63/107 (2013.01); HO4L 63/102 identify, from the log of events, actions that were permitted
(2013.01) based on particular statements contained in the policy. Based
(58) Field of Classification Search on field values contained in the corresponding events, the
CPC oo HO4L, 63/107; HO4L 63/102 Policy refiner application generates an abstraction of the
See application file for complete search history. field values, where the abstraction of the field values may
represent a more restrictive version of the field from a policy
(56) References Cited perspective. These abstractions can be presented to users as
recommendations for modifying their policy to reduce the
U.S. PATENT DOCUMENTS privileges granted by the policy.
10,148,701 B1* 12/2018 Hechtccceevenne GOG6F 9/455
10,158,670 B1* 12/2018 Rothcccoev.e.. HO4L 63/102 20 Claims, 8 Drawing Sheets

OBTAINING ALOG OF EVENTS RELATED TO ACTIVITY ASSOCIATED OPERS'SE‘ONS
WITH AN ACCOUNT OF A COMPUTING SYSTEM 502

4

|

IDENTIFYING A POLICY ASSCCIATED WITH THE ACCOUNT,
WHEREIN THE POLICY INCLUDES A STATEMENT DEFINING A
PERWISSION ASSOCIATED WITH THE AGCOUNT, AND WHEREIN THE
'STATEMENT INCLUDES A PLURALITY OF FIELD VALUES DEFINING
THE PERMISSION 504

|

IDENTIFYING, FROM THE LOG OF EVENTS, A PLURALITY OF
EVENTS INDICATING ACTIONS THAT WERE PERMITTED BASED ON
‘THE STATEMENT 508

|

IDENTIFYING & PLURALITY OF EVENT VALUES FROM THE
PLURALITY OF EVENTS CORRESPONDING TO A PARTIGULAR FIELD
VALUE OF THE PLURALITY OF FIELD VALUES IN THE STATEMENT
508

l

GENERATING, BASED ON THE PLURALITY OF EVENT VALUES, A

MODIFIED FIELD VALUE, WHEREIN THE MODIFIED FIELD VALUE IS

GENERATED USING A FIELD-SPECIFIC ABSTRACTION ALGORITHM,

AND WHEREIN THE MODIFIED FIELD VALUE IS MORE RESTRICTIVE
‘THAN THE PARTICULAR FIELD VALUE 510

|

PROVIDING ACCESS TO THE MODIFIED FIELD VALUE 512

US 12,348,529 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2020/0366707 Al* 11/2020 Co0k ..cocovvveevevacnnns HO4L 9/40
2021/0281610 Al* 9/2021 Applegate-Swanson

HO4L 63/20
2021/0406720 ALl* 12/2021 Songcce.. HOA4L 63/0227
2022/0191206 Al* 6/2022 . HO4L 41/0627
2024/0179188 Al* 5/2024 Torlak HOAL 63/104

* cited by examiner

U.S. Patent

Jul. 1, 2025

Sheet 1 of 8

US 12,348,529 B2

PROVIDER NETWORK 100

PROVIDER NETWORK SERVICES 118

r {
u STORAGE | | HARDWARE |
| SERVICE12 | ooe | VIRTUALIZATION |
| . | SERVICEL10 |
: ! t L
lp————————— N : == —— - }
R} |
|} STORAGE OBJECTS 11 oeayrEs 116 |1 INSTANCES 112 11
120 ! h |
11 - 1 { |
| === == =—-—-—-- l | e 1
1

ACCOUNT ACTIVITY
LOGGING SERVICE

154
©

IJEVENT LOGS 156]

\

A 4

r
! POLICY

|
ORGANIZATION 142 I |
:' i PRogg/sEs[,\Ionea : PROPERTY 1
, ACCOUNT 144A | — | | ANALYZER 158 |
e e e — [L. D
: } IDENTITIES 128 : : POLICIES 134 } : f
I i H e—f
ik ! : IDENTITY-BASED :' POLICY REFINER SERVICE 150
|
i 1H T/POLICY 160 J
1T e " [TRusT PoLICIES il 162
: ll___.__- ‘__:_.._‘: : 1% 1t <8\ !
(1 ! Lo t
| :: USER 130N ” ROLE 132N :, ! . : | POLICY REFINEMENT ANALYZER 124
M N ! . i; A T
HH-------—-—-———— - o e ! i (
I :: 140 ” i RECOMMENDATIONS 126
! [| |]
I - - {
e e e ~ !
: : ACCOUNT 144B | : ACCOUNT 144N | : 10 y
—————— ~ 1 ——————a
i
: : | ROLE(S) 146 : AL : | ROLE(S) 148 : [} POLICY REFINEMENT
- ' . b REPORT 170
4

{
\

ORGANIZATION
CONFIGURATION
REQUEST(S) 164

—_——— e e e — ———

INTERMEDIATE NETWORK(S) 104

| ELECTRONIC |

| DEVICE(S)
' 102

FIG. 1

O

POLICY REFINEMENT
REQUEST 166

U.S. Patent Jul. 1, 2025 Sheet 2 of 8 US 12,348,529 B2

POLICY SNIPPET 200 EVENT LOGS SNIPPET 202
{) , {"Records": [{
Statement” : | "userldentity": {
{ "userName"; "Alice"
“Action” 3
:ss:List*: "eventTime": "2014-03-06T721:22:547",
| ss:Put” "eventName": "ListObjects",
“R?source”: [. “eventTime": "2014-03-07T24:09:12Z",
| ID:ss::test-" "eventName"; "ListObjectVersions”,
:Eﬁ.ec't”: A”(zW’ “eventTime"; "2014-03-07T09:34:222",
} Principal”: "eventName": "PutObject’,
1
]
}
T 7~
< N N : | P /
AN i ! s 7
AS N i] s/
Vi
~ | / s
AN I] 7
N | e
\ ! 7/
N | i s
AN i | s

N 7/

POLICY EVENT
REFINER POLICY 160 EVE%‘OGS PROCESSOR
SERVICE 150 162 168

EVENT-TO-POLICY STATEMENT MAPPING 204
——————————————— ~ .
{ POLICY 160 |4 evenTzg
l -
“1
! [POLICY STATEMENT QOBA] | S
! l EVENT 206M
| . b A
l b I //
| ,'r’
I i | _
|| POLICY STATEMENT 208N |-+~~~ EVENT 206N
|
|
|
e J

FIG. 2

U.S. Patent

Jul. 1, 2025 Sheet 3 of 8

POLICY REFINER SERVICE 150

US 12,348,529 B2

POLICY REFINEMENT ANALYZER 124

POLICY 160
FIELD-VALUE PAIRS
__________________ -
300 | EVENT-TO-POLICY STATEMENT |
! ; MAPPING 204 :
' ! | EVENT 304A !
POLICY STATEMENT FIELD- | _ /:/ . e :
VALUE PAIR 302 ' eventName”: "ListObjects l
I . I
“Action”: [: 4 :
“ssiList™, | I
ssPut” R EVENT 304 :
b o |
| : “eventName": "ListObjectVersions' :
| e e |
| |
I I
| |
v
FIELD VALUE ABSTRACTOR 306
EVENT EVENT EVENT EVENT
FIELD |eee| FIELD FIELD |eee| FIELD
VALUE 308A VALUE 308M | | VALUE 308N VALUE 308Z

(ABSTRACTION ALGORITHM 310 |

(ABSTRACTION ALGORITHM 310]

RESULT 312A

RESULT 312B

ABSTRACTION ALGORITHM 310

RESULT 312C

v
MODIFIED FIELD VALUE 314
“Action”: [
rss gt
“ss:ListObject*”,
“ss:Put™

FIG. 3

U.S. Patent Jul. 1, 2025 Sheet 4 of 8

REPORT INTERFACE 400

\

US 12,348,529 B2

Services

user@example.com | Support

Security Analysis

Tools Dashboard Policy Refinement Analysis Report

Discovery Organization Profile
Organization Name: AcmeCo
Assessment Policy Analyzed: AcmePolicy1
Last Analyzed: 11/29/2022
Report

Policy Refinement Recommendations

{
"Version": "2012-10-17",

"Statement™: [

"Action™: [

Ho o] iogxn

"ss:ListObject*",
"ss:PutObject*"
]

Resource™: [

| "id:csp:ss:::sding-1900-bucket-001*"
],h ________________
"Effect": "Allow",

"Principal™: "™"

"Condition™: {"IpAddress": {"aws:Sourcelp": [
"205.251.233.105/32"

I

"Action": ["s3:Head™"],

"Resource": [

"id:csp:ss::
"id:csp:ss:::sding-1900-bucket-001"

1.
"Effect": "Allow",
"Principal": ™"

|
J

:logservice-10gs-642140651074-jpx2b8ae--do-notdelete*",

MODIFIED FIELD VALUE

COMPARISON 402
\I

FIG. 4

U.S. Patent Jul. 1, 2025 Sheet 5 of 8 US 12,348,529 B2

OPERATIONS
500

p

OBTAINING A LOG OF EVENTS RELATED TO ACTIVITY ASSOCIATED
WITH AN ACCOUNT OF A COMPUTING SYSTEM 502

y

{DENTIFYING A POLICY ASSOCIATED WITH THE ACCOUNT,
WHEREIN THE POLICY INCLUDES A STATEMENT DEFINING A
PERMISSION ASSOCIATED WITH THE ACCOUNT, AND WHEREIN THE
STATEMENT INCLUDES A PLURALITY OF FIELD VALUES DEFINING
THE PERMISSION 504

A

IDENTIFYING, FROM THE LOG OF EVENTS, A PLURALITY OF
EVENTS INDICATING ACTIONS THAT WERE PERMITTED BASED ON
THE STATEMENT 506

A

IDENTIFYING A PLURALITY OF EVENT VALUES FROM THE
PLURALITY OF EVENTS CORRESPONDING TO A PARTICULAR FIELD
VALUE OF THE PLURALITY OF FIELD VALUES IN THE STATEMENT
508

A

GENERATING, BASED ON THE PLURALITY OF EVENT VALUES, A
MODIFIED FIELD VALUE, WHEREIN THE MODIFIED FIELD VALUE IS
GENERATED USING A FIELD-SPECIFIC ABSTRACTION ALGORITHM,
AND WHEREIN THE MODIFIED FIELD VALUE IS MORE RESTRICTIVE

THAN THE PARTICULAR FIELD VALUE 510

PROVIDING ACCESS TO THE MODIFIED FIELD VALUE 512

FIG. 5

U.S. Patent

Jul. 1, 2025

Sheet 6 of 8

RESOURCE INSTANCES 612

LOCALIP

PUBLIC-TO-
PROVIDER LOCAL
NETWORK NETWORK
600 ADDRESS
o MAPPING

7
-~
Vae v NN
P ™~
‘\ CUSTOMER)
g NETWORK “\
Mo 6508 J

CUSTOMER
NETWORK
650A

A
X

PUBLIC IP
ADDRESS(ES) 614

A
Y

VIRTUALIZATION
SERVICE(S) 610

J 3

INTERMEDIATE
NETWORK
640

CUSTOMER
DEVICE(S) 652

FIG. 6

ADDRESS(ES) 616 | o

US 12,348,529 B2

OTHER
NETWORK
ENTITIES

620

~
/\5"\
v

/s N~

N
CUSTOMER

A
NETWORK <
650C)

U.S. Patent Jul. 1, 2025

Sheet 7 of 8

(VIRTUALIZED) DATA STORE 716 COMPUTE
RESOURCES 724
> <> =
STORAGE | ¢¢¢ |STORAGE COMPUTE
718A 718N INSTANCES
PROVIDER 725
NETWORK
. x /
HARDWARE VIRTUALIZATION
STORAGE SERVICE 710 SERVICE 720
API(S) 702
A
INTERMEDIATE
NETWORK
740
T T T)
| T T |
|LOCAL (VIRTUALIZED) :
| STORAGE "
(___m]
///"v --------
P
v
LOCAL
NETWORK
756
CUSTOMER
DEVICE(S) 790
T I
________ : SOl VRTUAL
! | ‘{ COMPUTING {
: CONSOLE 794 | | SYSTEM(S)792
L ; b -
CUSTOMER NETWORK 750

FIG. 7

US 12,348,529 B2

U.S. Patent Jul. 1, 2025 Sheet 8 of 8 US 12,348,529 B2
COMPUTER SYSTEM 800
| ——————— -y | ——————— -y
PROCESSOR | PROCESSOR : ooe | PROCESSOR l
810A : 8108 | | 810N |
e e
A * *
vy 4 Y
10 INTERFACE(S) 830
A *

' S S

SYSTEM MEMORY 820 |I____1____| . }

| OFFLOAD NETWORK 1

| |

POLICY REFINER | | pa7a || _CARD(S)870a | | INTERFACE(S) | !

SERVICE CODE 806 Trtotaiiioin I 840 I

825 00 l|) PROCESSOR(S) | - :

i 875 1 I

‘L'—_—_—_—:_—_—_—_"l 870 {

NETWORK(S)
850
Yy
ELECTRONIC DEVICE(S)
860

FIG. 8

US 12,348,529 B2

1
AUTOMATED POLICY REFINER FOR
CLOUD-BASED IDENTITY AND ACCESS
MANAGEMENT SYSTEMS

BACKGROUND

Cloud provider networks enable users to use a variety of
computing-related resources such as compute resources,
storage resources, networking resources, and the like. When
a user or application interacts with a cloud provider network
(e.g., using an application programming interface (API),
command line interface (CLI), or web-based console pro-
vided by the cloud provider network), the user or application
typically is required to provide security credentials used by
the cloud provider to authenticate the user or application and
to determine whether the user or application has permission
to access the requested resources or actions. The security
credentials can include, for example, usernames and pass-
words, access keys, and the like.

BRIEF DESCRIPTION OF DRAWINGS

Various examples in accordance with the present disclo-
sure will be described with reference to the drawings, in
which:

FIG. 1 is a diagram illustrating an environment including
a policy refiner application used to analyze and recommend
modifications to identity and access management policies
created by users of a cloud provider network to reduce
permissions granted by the policies according to some
examples.

FIG. 2 is a diagram illustrating the use of an event
processor to map events contained in event logs obtained
from an account activity logging service to statements
contained in a policy according to some examples.

FIG. 3 is a diagram illustrating the example use of a policy
refinement analyzer to generate policy refinement recom-
mendations associated with statements of a policy according
to some examples.

FIG. 4 is an example user interface displaying recom-
mended modifications to a policy as generated by a policy
refiner application according to some examples.

FIG. 5 is a flow diagram illustrating operations of a
method for using a policy refiner application to analyze and
recommend modifications to identity and access manage-
ment policies created by users of a cloud provider network
to reduce permissions granted by the policies according to
some examples.

FIG. 6 illustrates an example provider network environ-
ment according to some examples.

FIG. 7 is a block diagram of an example provider network
that provides a storage service and a hardware virtualization
service to customers according to some examples.

FIG. 8 is a block diagram illustrating an example com-
puter system that can be used in some examples.

DETAILED DESCRIPTION

The present disclosure relates to methods, apparatus,
systems, and non-transitory computer-readable storage
media for a policy refiner application used to analyze and
recommend modifications to identity and access manage-
ment policies created by users of a cloud provider network
to reduce permissions granted by the policies (e.g., to move
the policies toward least-privilege permissions). According
to some examples, a policy refiner application (imple-
mented, e.g., as a standalone software application, web-

10

15

20

25

30

35

40

45

50

55

60

65

2

based service, or the like) receives as input a policy to
analyze, and a log of events related to activity associated
with one or more accounts of a cloud provider network (e.g.,
as generated by an account activity logging service). The
policy refiner application can identify, from the log of
events, actions that were permitted based on particular
statements contained in the policy. Based on field values
contained in the corresponding events, the policy refiner
application generates an abstraction of the field values,
where the abstraction of the field values may represent a
more restrictive version of the field from a policy perspec-
tive (e.g., because it restricts the associated policy statement
to fewer actions, to a smaller range of IP addresses, etc.). In
some examples, these abstractions can be presented to users
as recommendations for modifying their policy to reduce the
privileges granted by the policy.

Cloud provider networks typically include services and
tools that enable users to securely control access to their
resources (an object provided by a service of the cloud
provider network such as, e.g., a compute instance, a storage
resource, a user or a role, etc.). These services and tools, for
example, broadly allow users to control who is authenticated
(i.e., signed in) and authorized (i.e., has permissions) to
access and use certain resources. Users can manage access
management by creating policies and attaching those poli-
cies to identities (users, groups of users, or roles) or to
resources (e.g., storage resources, compute resources, etc.)
As a best practice, it is often advised that users grant only the
permissions required to perform the tasks desired by the
users in control of a set of accounts.

Administrators and developers sometimes nevertheless
grant permissions to entities (users or roles) beyond what
those entities require to perform the operations expected of
those entities. In some examples, a cloud provider provides
tools that can be used to automatically create a policy that is
based on logged access activity for one or more entities. For
example, some tools can generate a policy template con-
taining the permissions that the entity used in a specified
date range. A user can then use the template to create a
policy with more fine-grained permissions that grant only
the permissions that are required to support a specific use
case. An assumption with such tools is that actual user
access to resources over time can be more indicative of what
permissions should be granted. However, administrators and
developers can also benefit from an ongoing review of
existing policies for opportunities to refine the permissions
contained therein and currently users do not have access to
automated ways to perform such analyses.

These challenges, among others, are addressed by the
described policy refiner application enabling users to refine
the permissions contained in a policy based on an analysis
of event logs reflecting access activity for one or more
associated entities. In some examples, the policy refiner
application generalizes information contained in the event
logs into predicates that can be used as field values in one or
more policies under analysis. As indicated, these recom-
mended modifications to a policy generated by the policy
refiner application can be displayed to users in a graphical
user interface (GUI), enabling users to review the recom-
mendations and to readily implement recommended modi-
fications to policy as desired. Among other benefits, the use
of the policy refiner application enables users to more
efficiently arrive at least-privilege policies based on account
activity over time, thereby improving the security and fault
tolerance of users’ cloud-based entities and resources.

FIG. 1 is a diagram illustrating an environment including
a policy refiner application used to analyze and recommend

US 12,348,529 B2

3

modifications to identity and access management policies
created by users of a cloud provider network to reduce
permissions granted by the policies according to some
examples. A provider network 100 (or, “cloud” provider
network) provides users with the ability to use one or more
of a variety of types of computing-related resources such as
compute resources (e.g., executing virtual machine (VM)
instances and/or containers, executing batch jobs, executing
code without provisioning servers), data/storage resources
(e.g., object storage, block-level storage, data archival stor-
age, databases and database tables, etc.), network-related
resources (e.g., configuring virtual networks including
groups of compute resources, content delivery networks
(CDNs), Domain Name Service (DNS)), application
resources (e.g., databases, application build/deployment ser-
vices), access policies or roles, identity policies or roles,
machine images, routers and other data processing
resources, etc. These and other computing resources can be
provided as services, such as a hardware virtualization
service that can execute compute instances, a storage service
that can store data objects, etc. The users (or “customers”™)
of provider networks 100 can use one or more user accounts
that are associated with a customer account, though these
terms can be used somewhat interchangeably depending
upon the context of use. Users can interact with a provider
network 100 across one or more intermediate networks 104
(e.g., the internet) via one or more interface(s) 106, such as
through use of application programming interface (API)
calls, via a console implemented as a website or application,
etc. An API refers to an interface and/or communication
protocol between a client and a server, such that if the client
makes a request in a predefined format, the client should
receive a response in a specific format or initiate a defined
action. In the cloud provider network context, APIs provide
a gateway for customers to access cloud infrastructure by
allowing customers to obtain data from or cause actions
within the cloud provider network, enabling the develop-
ment of applications that interact with resources and services
hosted in the cloud provider network. APIs can also enable
different services of the cloud provider network to exchange
data with one another. The interface(s) 106 can be part of, or
serve as a front-end to, a control plane 108 of the provider
network 100 that includes “backend” services supporting
and enabling the services that can be more directly offered
to customers.

For example, a cloud provider network (or just “cloud”)
typically refers to a large pool of accessible virtualized
computing resources (such as compute, storage, and net-
working resources, applications, and services). A cloud can
provide convenient, on-demand network access to a shared
pool of configurable computing resources that can be pro-
grammatically provisioned and released in response to cus-
tomer commands. These resources can be dynamically pro-
visioned and reconfigured to adjust to variable load. Cloud
computing can thus be considered as both the applications
delivered as services over a publicly accessible network
(e.g., the Internet, a cellular communication network) and
the hardware and software in cloud provider data centers
that provide those services.

A cloud provider network can be formed as a number of
regions, where a region is a geographical area in which the
cloud provider clusters data centers. Each region includes
multiple (e.g., two or more) availability zones (AZs) con-
nected to one another via a private high-speed network, for
example a fiber communication connection. An AZ (also
known as a “zone”) provides an isolated failure domain
including one or more data center facilities with separate

10

15

20

25

30

35

40

45

50

55

60

65

4

power, separate networking, and separate cooling from those
in another AZ. A data center refers to a physical building or
enclosure that houses and provides power and cooling to
servers of the cloud provider network. Preferably, AZs
within a region are positioned far enough away from one
another so that a natural disaster (or other failure-inducing
event) should not affect or take more than one AZ offline at
the same time.

Users can connect to an AZ of the cloud provider network
100 via a publicly accessible network (e.g., the Internet, a
cellular communication network), e.g., by way of a transit
center (TC). TCs are the primary backbone locations linking
users to the cloud provider network and can be collocated at
other network provider facilities (e.g., Internet service pro-
viders (ISPs), telecommunications providers) and securely
connected (e.g., via a VPN or direct connection) to the AZs.
Each region can operate two or more TCs for redundancy.
Regions are connected to a global network which includes
private networking infrastructure (e.g., fiber connections
controlled by the cloud provider) connecting each region to
at least one other region. The cloud provider network can
deliver content from points of presence (or “POPs”) outside
of, but networked with, these regions by way of edge
locations and regional edge cache servers. This compart-
mentalization and geographic distribution of computing
hardware enables the cloud provider network to provide
low-latency resource access to users on a global scale with
a high degree of fault tolerance and stability.

Generally, the traffic and operations of a provider network
can broadly be subdivided into two categories: control plane
operations carried over a logical control plane and data plane
operations carried over a logical data plane. While the data
plane represents the movement of user data through the
distributed computing system, the control plane represents
the movement of control signals through the distributed
computing system. The control plane generally includes one
or more control plane components distributed across and
implemented by one or more control servers. Control plane
traffic generally includes administrative operations, such as
system configuration and management (e.g., resource place-
ment, hardware capacity management, diagnostic monitor-
ing, system state information). The data plane includes user
resources that are implemented on the provider network
(e.g., computing instances, containers, block storage vol-
umes, databases, file storage). Data plane traffic generally
includes non-administrative operations, such as transferring
user data to and from the user resources. The control plane
components are typically implemented on a separate set of
servers from the data plane servers, and control plane traffic
and data plane traffic can be sent over separate/distinct
networks.

To provide these and other computing resource services,
provider networks 100 often rely upon virtualization tech-
niques. For example, virtualization technologies can provide
users the ability to control or use compute resources (e.g., a
“compute instance,” such as a VM using a guest operating
system (O/S) that operates using a hypervisor that might or
might not further operate on top of an underlying host O/S,
a container that might or might not operate in a VM, a
compute instance that can execute on “bare metal” hardware
without an underlying hypervisor), where one or multiple
compute resources can be implemented using a single elec-
tronic device. Thus, a user can directly use a compute
resource (e.g., provided by a hardware virtualization ser-
vice) hosted by the provider network to perform a variety of
computing tasks. Additionally, or alternatively, a user can
indirectly use a compute resource by submitting code to be

US 12,348,529 B2

5

executed by the provider network (e.g., via an on-demand
code execution service), which in turn uses one or more
compute resources to execute the code—typically without
the user having any control of or knowledge of the under-
lying compute instance(s) involved.

As described herein, one type of service that a provider
network may provide can be referred to as a “managed
compute service,” where a managed compute service
executes code or provides computing resources for its users
in a managed configuration. Examples of managed compute
services include, for example, an on-demand code execution
service, a hardware virtualization service 110, a container
service, or the like.

An on-demand code execution service (referred to in
various examples as a function compute service, functions
service, cloud functions service, functions as a service, or
serverless computing service) can enable users of the pro-
vider network 100 to execute their code on cloud resources
without having to select or manage the underlying hardware
resources used to execute the code. For example, a user can
use an on-demand code execution service by uploading their
code and use one or more APIs to request that the service
identify, provision, and manage any resources required to
run the code. Thus, in various examples, a “serverless”
function can include code provided by a user or other
entity—such as the provider network itself—that can be
executed on demand. Serverless functions can be maintained
within the provider network by an on-demand code execu-
tion service and can be associated with a particular user or
account or can be generally accessible to multiple users/
accounts. A serverless function can be associated with a
Uniform Resource Locator (URL), Uniform Resource Iden-
tifier (URI), or other reference, which can be used to invoke
the serverless function. A serverless function can be
executed by a compute resource, such as a virtual machine,
container, etc., when triggered or invoked. In some
examples, a serverless function can be invoked through an
application programming interface (API) call or a specially
formatted HyperText Transport Protocol (HTTP) request
message. Accordingly, users can define serverless functions
that can be executed on demand, without requiring the user
to maintain dedicated infrastructure to execute the serverless
function. Instead, the serverless functions can be executed
on demand using resources maintained by the provider
network 100. In some examples, these resources can be
maintained in a “ready” state (e.g., having a pre-initialized
runtime environment configured to execute the serverless
functions), allowing the serverless functions to be executed
in near real-time.

A hardware virtualization service 110 (referred to in
various implementations as an elastic compute service, a
virtual machines service, a computing cloud service, a
compute engine, or a cloud compute service) can enable
users of the provider network 100 to provision and manage
compute resources such as virtual machine instances 112.
Virtual machine technology can use one physical server to
run the equivalent of many servers (each of which is called
a virtual machine), for example using a hypervisor, which
can run at least on an offload card of the server (e.g., a card
connected via PCI or PCle to the physical CPUs) and other
components of the virtualization host can be used for some
virtualization management components. Such an offload
card of the host can include one or more CPUs that are not
available to user instances, but rather are dedicated to
instance management tasks such as virtual machine man-
agement (e.g., a hypervisor), input/output virtualization to
network-attached storage volumes, local migration manage-

10

15

20

25

30

35

40

45

55

60

65

6

ment tasks, instance health monitoring, and the like). Virtual
machines are commonly referred to as compute instances or
simply “instances.” As used herein, provisioning a virtual
compute instance generally includes reserving resources
(e.g., computational and memory resources) of an underly-
ing physical compute instance for the client (e.g., from a
pool of available physical compute instances and other
resources), installing or launching required software (e.g., an
operating system), and making the virtual compute instance
available to the client for performing tasks specified by the
client.

Another type of managed compute service can be a
container orchestration and management service (referred to
in various implementations as a container service, cloud
container service, container engine, or container cloud ser-
vice) that allows users of the cloud provider network to
instantiate and manage containers. In some examples the
container service can be a Kubernetes-based container
orchestration and management service (referred to in various
implementations as a container service for Kubernetes,
Azure Kubermetes service, IBM cloud Kubernetes service,
Kubernetes engine, or container engine for Kubernetes). A
container, as referred to herein, packages up code and all its
dependencies so an application (also referred to as a task,
pod, or cluster in various container services) can run quickly
and reliably from one computing environment to another. A
container image is a standalone, executable package of
software that includes everything needed to run an applica-
tion process: code, runtime, system tools, system libraries
and settings. Container images become containers at run-
time. Containers are thus an abstraction of the application
layer (meaning that each container simulates a different
software application process). Though each container runs
isolated processes, multiple containers can share a common
operating system, for example by being launched within the
same virtual machine. In contrast, virtual machines are an
abstraction of the hardware layer (meaning that each virtual
machine simulates a physical machine that can run soft-
ware). While multiple virtual machines can run on one
physical machine, each virtual machine typically has its own
copy of an operating system, as well as the applications and
their related files, libraries, and dependencies. Some con-
tainers can be run on instances that are running a container
agent, and some containers can be run on bare-metal servers,
or on an offload card of a server.

In some examples, an identity and access management
service 114 is a service that enables users to securely control
access to cloud provider network resources (e.g., resources
116 associated with various provider network services 118,
such as storage objects 120 associated with a storage service
122, databases associated with a database service, compute
instances 112 associated with a hardware virtualization
service 110, and the like). The identity and access manage-
ment service 114 is broadly used to control who is permitted
to authenticate (e.g., sign in) with the cloud provider net-
work 100 and who is authorized (e.g., has permissions) to
use resources provided by the cloud provider network. In
general, a resource is a concept used to capture the domain
of items that can be created, read, modified, or deleted by
customers in a cloud provider network 100. Examples of
resources also include identities (e.g., identities 128, includ-
ing example users 130A, . . ., 130N and roles 1324, . . .,
132N) and policies 134 (e.g., including identity-based poli-
cies 136, trust policies 138, and other policies 140). FIG. 1
further illustrates the concept of an organization 142, which
can include any number of associated accounts 144A,
1448, . . ., 144N, which can further include any number of

US 12,348,529 B2

7

users and roles (e.g., role(s) 146 associated with account
144B and role(s) 148 associated with account 144N).

When a person initially creates an account with the cloud
provider network 100, the person may typically begin with
a single sign-in identity that has complete access to all cloud
provider network services and resources associated with the
account (e.g., a root user of identities 128). For example, the
root user identity may be accessed by signing in with a
username (e.g., an email address) and a password used to
create the account. Cloud provider networks 100 often
advise users to avoid using a root user for most tasks and
instead to create additional user accounts with defined
permissions (e.g., such as one or more of users 130A, . . .,
130N). A user can then optionally grant different permis-
sions to different user accounts for different resources. For
example, a user account might be configured to allow some
users complete access to a hardware virtualization service
110, a storage service 122, and other cloud provider network
100 resources. Other user accounts might be allowed read-
only access to some storage buckets, or permission to
administer some instances 112, etc.

In some examples, a principal represents a person or
application that can make a request for an action or operation
on a resource of the cloud provider network 100 (e.g., a
resource 116 or a resource of the identity and access man-
agement service 114) via one or more identities. The set of
identities 128 associated with an account 144A can include
any number of users 130A, . . . , 130N and roles
1324, . . ., 132N. A cloud provider network request occurs
when a principal uses an identity (e.g., a user or a role) to
send a request for an action or operation on a resource. A
request can include some or all of the following information:
the action or operations that the principal wants to perform,
the resource object upon which the actions or operations are
performed, the person or application that used an identity
(e.g., a user or role) to send the request, environment data
(e.g., information about the IP address, user agent, SSL.
enabled status, time of day, etc.), and resource data (e.g.,
data related to the resource that is being requested, such as
a resource identifier, or a tag name). In some embodiments,
the identity and access management service 114 gathers the
information contained in a request into a request context,
which is used to evaluate and authorize the request.

For a request to be completed, in some examples, the
identity and access management service 114 determines
whether the requesting principal is authorized (e.g., permit-
ted) to complete the request. During authorization, the
identity and access management service 114 uses values
included in the request context to check for policies that
apply to the request (e.g., one or more of policies 134). The
identity and access management service 114 uses the poli-
cies 134 to determine whether to allow or deny the request.
In some examples, the policies are stored by the identity and
access management service 114 as JavaScript Object Nota-
tion (JSON) documents (or using any other data format) and
specify the permissions for particular identities. There can
be one or multiple types of policies 134 that can affect
whether a request is authorized including, e.g., identity-
based policies 136, trust policies 138, along with other
possible policies 140. For example, to provide users with
permissions to access resources in their own account, iden-
tity-based policies can be configured, while resource-based
policies may be used for granting cross-account access to
resources. In general, the identity and access management
service 114 checks each policy that is applicable to the
context of a request. If a single policy includes a denied
action, the identity and access management service 114

20

25

30

40

45

8

denies the entire request. In some examples, an identity and
access management service 114 denies requests by default,
such that a request is authorized only if every part of a
request is allowed by applicable permissions policies.

Once a request is authenticated and authorized, the iden-
tity and access management service 114 approves the actions
or operations in the request. Operations are defined by a
service (e.g., by the storage service 122, hardware virtual-
ization service 110, identity and access management service
114, etc.) and include actions that can be performed on or
relative to a resource, such as viewing, creating, editing, and
deleting that resource. For example, the identity and access
management service 114 may support actions such as Crea-
teUser, DeleteUser, CreateRole, and AssumeRole, among
many other possible actions. To allow a principal to perform
an operation, the action is included in a policy that applies
to the principal or the affected resource.

In some examples, identity-based policies 136 represent
policies that are attached to an identity, such as a user, group,
or role in an account. Resource-based policies represent
policies that are attached to a resource such as a storage
object 120, an instance 112, a role trust policy, etc. A
resource-based policy, for example, controls what actions a
specified principal can perform on that resource and under
what conditions. In some examples, the identity and access
management service 114 supports trust policies 138, which
can be attached to a role (e.g., one or more of roles
1324, . .., 132N). Because a role is both an identity and a
resource that supports resource-based policies, both a trust
policy and an identity-based policy can be attached to a role.
Trust policies 138 define which principal entities (accounts,
users, roles, and federated users) can assume the role.

In some examples, at circle “1” in FIG. 1, one or more
users use electronic device(s) 102 to generate organization
configuration request(s) 164 to configure a set of accounts,
identities, policies, etc., optionally associated with an orga-
nization (e.g., an organization 142) and to further configure
policies 134 associated with some or all those resources.
These identities, for example, may be created to provide
authentication for users and processes within accounts (e.g.,
accounts 144A, . . ., 144N) of the cloud provider network
100. As indicated above, identities represent a principal and
can be authenticated and then authorized to perform actions
in the cloud provider network 100 and each identity can be
associated with one or more policies 134 to determine what
actions a user or role can do with which cloud provider
network resources and under what conditions. The collec-
tion of accounts, identities, and policies may be created, for
example, by an organization that intends to use various
services of the cloud provider network 100 for various
purposes. Furthermore, the collection of accounts, princi-
pals, and policies comprising an organization may be modi-
fied over time as desired by the organization.

In some embodiments, at circle “2,” responsive to the
organization configuration request(s) 164, the identity and
access management service 114 creates and stores data
representing the accounts, identities, and policies. As indi-
cated herein, these identities and policies can be added,
edited, and removed by external users of the cloud provider
network 100 with sufficient privileges, e.g., using a web-
based console, API, CLI, or other interface provided by the
identity and access management service 114, and data rep-
resenting the principals and policies can be stored using
various types of storage resources managed by the identity
and access management service 114. Various principals can
then use the created user(s) and role(s) to perform actions in
relation to services provided by the provider network 100

US 12,348,529 B2

9

including, e.g., creating and launching resources, modifying
resources, deleting or termination resources, etc., over time
as desired.

In some examples, at circle “3,” an account activity
logging service 154 generates event logs 156 reflecting user
activity in a cloud provider network 100. An account activity
logging service 154, for example, can enable the auditing,
security monitoring, and operational troubleshooting. In
some examples, the events included in event logs 156
contain information about activity associated with users’
accounts such as, e.g., identifiers of users/roles making
requests, the services used, the actions performed, the
parameters for the actions, and the response elements
returned by the applicable service. In some examples, the
event logs can be stored by the account activity logging
service 154 in users’ storage objects 120 provided by a
storage service 122, or in any other storage location acces-
sible to users desiring the view the logs. In some examples,
the account activity logging service 154 can also log data
events, which provide insights into the resource (e.g., “data
plane”) operations performed on or within the resource
itself.

In some embodiments, at circle “4,” the policy refiner
service 150 receives a policy refinement request 166 to
analyze one or more policies for possible modifications to
make the policy or policies more restrictive. The request 166
can be generated by a user using a web-based console, API,
CLI or any other interface in which a user can identify one
or more policies to analyze (e.g., one or more of policies
134). As shown, the policy refiner service 150 can be part of
a broader suite of security analysis tools 152 provided by the
cloud provider network 100, where other tools can include
a policy property analyzer 158 among many other possible
tools.

In some examples, policy property analyzer 158 imple-
ments software used to translate policies into a mathematical
language and then use automated reasoning tools to check
properties of the policies. The tools used by a policy
property analyzer 158 can include automated reasoners
called Satisfiability Modulo Theories (SMT) solvers, which
use a mix of numbers, strings, regular expressions, dates,
and IP addresses to prove and disprove logical formulas.
With these tools, the policy property analyzer 158 can
compare a given policy A against a “probe” policy (or more
generally another policy) to determine whether policy A is
more permissive than the probe policy (and optionally to
identify actions permitted by one policy but not the other).
For example, to determine whether an identity A is permitted
to delete a resource B, the policy analyzer 158 can be used
to compare a policy associated with identity A against a
probe policy that does permit deleting the resource B. In this
example, the policy property analyzer 158 can provide an
indication of whether the policy associated with identity A
is more permissive than the probe policy. In the context of
the policy refiner service 150, the policy property analyzer
158 can be used to determine whether suggested refinements
to a policy generated as described herein indeed cause the
policy to be more restrictive than without the suggested
refinements (e.g., to ensure that the suggested modifications
are moving the policy towards least privileges) and to
identify actions permitted by an unmodified policy but are
not permitted by a policy with one more modifications
implemented.

In some examples, the policy refinement request 166 can
include an identifier of one or more policies to be analyzed
(e.g., one or more of policies 134, which can include an
organization-wide policy such as a service control policy)

30

40

45

10

and event logs to use as part of the analysis (e.g., from event
logs 156 generated by an account activity logging service
154). A user can provide an identifier of a storage location
of the one or more policies and event logs within the
provider network 100, upload a copy of the one or more
policies and event logs, or otherwise provide the information
contained therein to the policy refiner service 150. In some
examples, the policy refinement request 166 can include an
indication of a time period within the event logs 156 to use
for analysis (e.g., only the last 30 days, last 60 days, last 90
days, etc.), one or more particular accounts or roles of
interest, one or more services of the cloud provider network
100 for which action requests are of interest, etc., to option-
ally limit the scope of the analysis. Based on the policy
refinement request 166 and any optional parameters pro-
vided by a user, the policy refiner service 150 can, at circle
“5,” obtain a policy 160 (or optionally multiple policies)
and, at circle “6,” obtain event logs 162 from the event logs
156 to be used in the requested analysis.

In some examples, at circle “7,” the policy refiner service
150 uses an event processor 168 to process events from
event logs 162 to extract information relevant to the refine-
ment analysis to be performed by a policy refinement
analyzer 124. At a high level, the event processor 168 is used
to parse events from the event logs 162 and to create a
mapping between individual events and one or more state-
ments from a policy 160 that caused the identity and access
management service 114 to permit the requests represented
by the events. For example, if an event from the event logs
162 describes an action in which a user account from
organization 142 launched a compute instance 112, the event
processor 168 can identify one or more statements from the
policy 160 that caused the identity and access management
service 114 to permit the request.

FIG. 2 is a diagram illustrating the use of an event
processor to map events contained in event logs obtained
from an account activity logging service to statements
contained in a policy according to some examples. As shown
in FIG. 2, a policy refiner service 150 provides a policy 160
and event logs 162 to an event processor 168. The policy
snippet 200, for example, shows a portion of the policy 160.
In this example, the policy snippet 200 illustrates a policy
statement indicating that one or more actions (e.g., actions
that match the “ss:List*” and “ss:Put*” field values, e.g., any
actions that begin with the strings “ss:List” or “ss:Put”) are
permitted to be performed relative one or more resources
(e.g., identified by the resource identifier “ID:ss:::test-*”,
e.g., any resources with identifiers that begin with the string
“ID:ss:::test-").

The example event logs snippet 202 shows a portion of
the event logs 162, illustrating an event log entry corre-
sponding to an action performed by a user “Alice”. The
event log shown in event logs snippet 202 indicates that the
user Alice performed the actions named “ListObjects”,
“ListObjectVersions”, and “PutObject” at various times. In
this example, each of the actions is permitted by the state-
ment illustrated in the policy snippet 200. Other event logs
contained in the event logs 162 may represent other actions,
possibly performed by other users, and which may be
permitted by the same or different statements contained in
the policy 160.

As shown, in some examples, the event processor 168
creates event-to-policy statement mapping 204 data identi-
fying relationships between events in the event logs 162 and
statements contained in the policy 160. In the example
shown in FIG. 2, the event processor 168 determines that
each of event 2064, . . . , event 206M is permitted by the

US 12,348,529 B2

11

policy statement 208 A, while the event 206N is permitted by
the policy statement 208N). As illustrated, in some
examples, events can be permitted by two or more different
policy statements contained in a policy 160 (e.g., event
206M is permitted based on a combination of policy state-
ment 208A and policy statement 208N). The generated
event-to-policy statement mapping 204 is provided back to
the policy refiner service 150 for use in the analyses
described hereinafter.

Returning again to FIG. 1, at circle “8,” the policy
refinement analyzer 124 analyzes the information generated
by the event processor 168 and, at circle “9,” generates one
or more policy refinement recommendations 126 for the
policy or policies under analysis. FIG. 3 is a diagram
illustrating the example use of a policy refinement analyzer
124 to generate policy refinement recommendations associ-
ated with statements of a policy according to some
examples. As shown, the policy refinement analyzer 124
begins with a policy 160, containing a collection of field-
value pairs 300 (e.g., field-value pairs used to define actions,
resources, conditions, or other components of the statements
making up the policy 160) and the event-to-policy statement
mapping 204 generated by the event processor 168. In the
example shown in FIG. 3, the policy refinement analyzer
124 has further mapped field-value pairs from the events
contained in the event-to-policy statement mapping 204 to
corresponding field-value pairs 300 from the policy 160. For
example, in FIG. 3, the policy refinement analyzer 125 has
mapped field-value pairs from event 3044, . . ., event 304N
corresponding to an action name (e.g., “ListObjects” and
“ListObjectVersions™) to a corresponding policy statement
field-value pair 302 (e.g., indicating that actions starting
with names “ss:List*” or “ss:Put™” are permitted).

In some examples, once the policy refinement analyzer
124 has identified a plurality of event values from the
plurality of events corresponding to a particular field value
from a statement of the policy 160, a field value abstractor
306 is used to generate a refined field value, where the
refined field value may correspond to a value that causes the
policy 160 to be more restrictive than the policy 160 with the
original field value. In some examples, the field value
abstractor 306 uses one or more field-specific abstraction
algorithms to produce the modified field value 314 and is
designed to ensure that the modified field value 314 is more
restrictive than the original field value. For example, the
field value abstractor 306 can implement one field-specific
abstraction algorithm for action names, another field-spe-
cific abstraction algorithm for Internet Protocol (IP)
addresses, and the like. In some examples, a particular field
value within the policy analyzed by the field value abstractor
306 can include any of: a type of action the policy allows or
denies, a resource to which the statement relates, a condition
for granting the permission, or any other policy field.

In some examples, a field-value pair analyzed by the field
value abstractor 306 can include a range of Internet Protocol
(IP) addresses (e.g., specified as part of a policy condition
restricting access to a resource to a limited range of IP
addresses, or the like). In this example, a field-specific
abstraction algorithm implemented by the field value
abstractor 306 can generate a modified field value by deter-
mining a range of IP addresses that includes IP addresses
contained in the plurality of events matched to the particular
field. For example, the field value abstractor 306 can identify
individual IP addresses associated with various events and
determine a maximum range of IP addresses needed to
include the IP addresses. The field value abstractor 306 can
then determine whether the second range of IP addresses

10

15

20

25

30

35

40

45

50

55

60

65

12

includes fewer IP addresses than the initial range of IP
addresses (e.g., whether the second range of IP addresses is
more restrictive than the range specified in the original
policy) and, if so, can provide the second range of IP
addresses as a modified field value.

As another example, if field-value pair under analysis
identifies a first plurality of actions (e.g., the actions iden-
tified in the policy statement field-value pair 302), the field
value abstractor 306 can implement a field-specific abstrac-
tion algorithm that generates the modified field value by
identifying one or more second actions contained in the
event-to-policy statement mapping 204 corresponding to the
particular field (e.g., actions actually performed by one or
more users that were permitted by the policy 160). The field
value abstractor can then determine whether the one or more
second actions is fewer than the originally listed set of
actions and, if so, generate a modified field value by enu-
merating the one or more second actions, or by generating
a more restrictive string identifier of multiple actions.

As yet another example, if the particular field value under
analysis includes a first resource identifier identifying a
plurality of resources, the field value abstractor 306 can
implement a field-specific abstraction algorithm generates
the modified field value by identifying a plurality of second
resource identifiers contained in the plurality of events
corresponding to the particular field. The field value abstrac-
tor 306 can then identify, using the plurality of second
resource identifiers, a third resource identifier based on at
least one of: a longest common prefix of the plurality of
second resource identifiers, or a longest common suffix of
the plurality of second resource identifiers and determine
whether the third resource identifier is more restrictive than
the first resource identifier. If so, the field value abstractor
can use the third resource identifier as the modified field
value.

In some examples, the performance of the field-specific
abstraction algorithms is parallelizable across any number of
independent computing resources (e.g., separate processing
threads, VM instances, containers, servers, etc.). For
example, the performance of the field-specific abstraction
algorithms can be performed incrementally such that an
algorithm (e.g., an abstraction algorithm 310) can be per-
formed on a first subset of events (event field value
3084, . . ., event field value 308M) to obtain a result 312A
and separately performed (e.g., using separate computing
resources in parallel, or the same resources in sequence) on
a second subset of events (event field values 308N, . . . ,
event field value 308Z7) to obtain a result 312B. The abstrac-
tion algorithm 310 can then be performed on the results from
these separate analyses to obtain a result 312C, and on so on
as desired.

As indicated, in some examples, the policy refiner service
150 can determine, using a policy property analyzer 158,
that the policy including the modified field value is more
restrictive than the policy without the modified field value.
As indicated, the policy property analyzer can use a Satis-
fiability Modulo Theories (SMT) solver and other tech-
niques to determine that the policy including the modified
field value is more restrictive than the policy without the
modified field value.

Returning to FIG. 1, at circle “10,” the policy refiner
service 150 generates a policy refinement report 170 iden-
tifying the one more suggested modifications generated by
the policy refinement analyzer 124, or otherwise provides
access to the one or more modified field values (e.g., to one
or more downstream components that use the modified field
values to perform other types of analyses). FIG. 4 is an

US 12,348,529 B2

13

example user interface displaying recommended modifica-
tions to a policy as generated by a policy refined application
according to some examples. The report interface 400, for
example, includes a policy refinement analysis report detail-
ing information about the policy refinement process. As
shown, the report can include information about differences
between a user’s original policy and the policy with one or
more suggested modifications. The modified field value
comparison 402, for example, shows a proposed edit to a
field value identifying resources for which one or more
actions are permitted. In this example, the modified field
value comparison 402 indicates a change that lengthens a
matching string used to identify permitted resources (e.g.,
because all event from the logs permitted by the correspond-
ing statement included a resource identifier containing at
least the modified string value), thereby further restricting
the policy. The policy refinement recommendation can gen-
erally include proposed modifications to any number of field
values in the policy. In other examples, instead of or in
addition to generating a policy refinement report, the policy
refiner service 150 can automatically implement one or more
of the suggested modifications.

In some examples, a user can provide input requesting to
accept a suggested modification to the policy 160 (e.g., by
providing input to a report interface 400 requesting imple-
mentation of the change identified by the modified field
value comparison 402). Responsive to such a request, the
policy refiner service 150 stores, in association with the
user’s account, a modified version of the policy based on the
modified field value(s). Subsequent requests associated with
the user’s account can be then by evaluated by the identity
and access management service 114 using the modified
policy.

Many of the examples described herein involve identify-
ing, from logs of events, actions that were permitted based
on statements included in a policy and refining policy
statements permitting certain actions accordingly. Similar
techniques can also be used to refine “deny” statements, i.e.,
statements that deny one or more types of actions based on
conditions specified in a policy. For example, the policy
refiner can obtain as input a set of events (e.g., provided as
event logs or in any other format) that a user desires to be
denied by a policy that the user is creating. In this example,
the policy refiner can generate, using longest common
prefix, longest common suffix, or other types of analyses, a
deny policy statement that denies each of the events iden-
tified in the input. The policy refiner performs the refinement
in a manner such that the deny statement denies the identi-
fied events but is not overly restrictive (e.g., it does not
simply deny all events).

FIG. 5 is a flow diagram illustrating operations 500 of a
method for using a policy refiner application to analyze and
recommend modifications to identity and access manage-
ment policies created by users of a cloud provider network
to reduce permissions granted by the policies according to
some examples. Some or all the operations 500 (or other
processes described herein, or variations, and/or combina-
tions thereof) are performed under the control of one or more
computer systems configured with executable instructions,
and are implemented as code (e.g., executable instructions,
one or more computer programs, or one or more applica-
tions) executing collectively on one or more processors. The
code is stored on a computer-readable storage medium, for
example, in the form of a computer program comprising
instructions executable by one or more processors. The
computer-readable storage medium is non-transitory. In

10

15

20

25

30

35

40

45

50

55

60

65

14

some examples, one or more (or all) of the operations 500
are performed by a policy refiner service 150 of the other
figures.

The operations 500 include, at block 502, obtaining a log
of events related to activity associated with an account of a
computing system.

The operations 500 further include, at block 504, identi-
fying a policy associated with the account, wherein the
policy includes a statement defining a permission associated
with the account, and wherein the statement includes a
plurality of field values defining the permission.

The operations 500 further include, at block 506, identi-
fying, from the log of events, a plurality of events indicating
actions that were permitted based on the statement.

The operations 500 further include, at block 508, identi-
fying a plurality of event values from the plurality of events
corresponding to a particular field value of the plurality of
field values in the statement.

The operations 500 further include, at block 510, gener-
ating, based on the plurality of event values, a modified field
value, wherein the modified field value is generated using a
field-specific abstraction algorithm, and wherein the modi-
fied field value is more restrictive than the particular field
value.

The operations 500 further include, at block 512, provid-
ing access to the modified field value. In some examples,
providing access to the modified field value includes causing
display of a suggested modification to the policy based on
the modified field value.

In some examples, the operations further include invoking
execution of the field-specific abstraction algorithm across
two or more computing resources, wherein each of the two
or more computing resources operates on a subset of the
plurality of events; and combining results generated by the
two or more computing resources to obtain the modified
field value.

In some examples, the operations further include receiv-
ing input requesting to accept the suggested modification to
the policy; and storing, in association with the account, a
modified version of the policy based on the modified field
value.

In some examples, the operations further include deter-
mining, using a policy property analyzer, that the policy
including the modified field value is more restrictive than the
policy without the modified field value, and wherein the
policy property analyzer uses a Satisfiability Modulo Theo-
ries (SMT) solver to determine that the policy including the
modified field value is more restrictive than the policy
without the modified field value.

In some examples, the operations further include receiv-
ing a request to analyze the policy, wherein the request
identifies at least one of: a time range of the log of events to
obtain, or an indication of one or more user accounts to
analyze; and wherein obtaining the log of events includes
obtaining events within the time range or associated with the
one or more user accounts.

In some examples, a particular field value of the plurality
of field values identifies one of: a type of action the policy
allows or denies, a resource to which the statement relates,
or a condition for granting the permission.

In some examples, the particular field value of the plu-
rality of field values identifies a first range of Internet
Protocol (IP) addresses, and wherein the field-specific
abstraction algorithm generates the modified field value by:
determining a second range of IP addresses that includes IP
addresses contained in the plurality of events corresponding
to the particular field; determining that the second range of

US 12,348,529 B2

15

1P addresses includes fewer IP addresses than the first range
of IP addresses; and using the second range of IP addresses
as the modified field value.

In some examples, the particular field value of the plu-
rality of field values identifies a first plurality of actions, and
wherein the field-specific abstraction algorithm generates
the modified field value by: identifying one or more second
actions contained in the plurality of events corresponding to
the particular field; determining that the one or more second
actions is fewer than the first plurality of actions; and
generating the modified field value by enumerating the one
or more second actions.

In some examples, the particular field value of the plu-
rality of field values is a first resource identifier identifying
a plurality of resources, and wherein the field-specific
abstraction algorithm generates the modified field value by:
identifying a plurality of second resource identifiers con-
tained in the plurality of events corresponding to the par-
ticular field; identifying, using the plurality of second
resource identifiers, a third resource identifier based on at
least one of: a longest common prefix of the plurality of
second resource identifiers, or a longest common suffix of
the plurality of second resource identifiers; and determining
that the third resource identifier is more restrictive than the
first resource identifier; and using the third resource identi-
fier as the modified field value.

In some examples, the operations further include obtain-
ing, using a policy property analyzer, an identifier of action
that is permitted by the policy without the modified field
value but is not permitted by the policy with the modified
field value, wherein the policy property analyzer uses a
Satisfiability Modulo Theories (SMT) solver to determine
that the action is permitted by the policy without the
modified field value but is not permitted by the policy with
the modified field value; and causing display of the identifier
of the action.

In some examples, the suggested modification to the
policy is displayed in a graphical user interface (GUI)
displaying differences between the policy with the particular
field value and the policy with the modified field value.

FIG. 6 illustrates an example provider network (or “ser-
vice provider system”) environment according to some
examples. A provider network 600 can provide resource
virtualization to customers via one or more virtualization
services 610 that allow customers to purchase, rent, or
otherwise obtain instances 612 of virtualized resources,
including but not limited to computation and storage
resources, implemented on devices within the provider net-
work or networks in one or more data centers. Local Internet
Protocol (IP) addresses 616 can be associated with the
resource instances 612; the local IP addresses are the internal
network addresses of the resource instances 612 on the
provider network 600. In some examples, the provider
network 600 can also provide public IP addresses 614 and/or
public IP address ranges (e.g., Internet Protocol version 4
(IPv4) or Internet Protocol version 6 (IPv6) addresses) that
customers can obtain from the provider 600.

Conventionally, the provider network 600, via the virtu-
alization services 610, can allow a customer of the service
provider (e.g., a customer that operates one or more cus-
tomer networks 650A-650C (or “client networks”) including
one or more customer device(s) 652) to dynamically asso-
ciate at least some public IP addresses 614 assigned or
allocated to the customer with particular resource instances
612 assigned to the customer. The provider network 600 can
also allow the customer to remap a public IP address 614,
previously mapped to one virtualized computing resource

10

15

20

25

30

35

40

45

50

55

60

65

16

instance 612 allocated to the customer, to another virtualized
computing resource instance 612 that is also allocated to the
customer. Using the virtualized computing resource
instances 612 and public IP addresses 614 provided by the
service provider, a customer of the service provider such as
the operator of the customer network(s) 650A-650C can, for
example, implement customer-specific applications and
present the customer’s applications on an intermediate net-
work 640, such as the Internet. Other network entities 620 on
the intermediate network 640 can then generate traffic to a
destination public IP address 614 published by the customer
network(s) 650A-650C; the traffic is routed to the service
provider data center, and at the data center is routed, via a
network substrate, to the local IP address 616 of the virtu-
alized computing resource instance 612 currently mapped to
the destination public IP address 614. Similarly, response
traffic from the virtualized computing resource instance 612
can be routed via the network substrate back onto the
intermediate network 640 to the source entity 620.

Local IP addresses, as used herein, refer to the internal or
“private” network addresses, for example, of resource
instances in a provider network. Local IP addresses can be
within address blocks reserved by Internet Engineering Task
Force (IETF) Request for Comments (RFC) 1918 and/or of
an address format specified by IETF RFC 4193 and can be
mutable within the provider network. Network traffic origi-
nating outside the provider network is not directly routed to
local IP addresses; instead, the traffic uses public IP
addresses that are mapped to the local IP addresses of the
resource instances. The provider network can include net-
working devices or appliances that provide network address
translation (NAT) or similar functionality to perform the
mapping from public IP addresses to local IP addresses and
vice versa.

Public IP addresses are Internet mutable network
addresses that are assigned to resource instances, either by
the service provider or by the customer. Traffic routed to a
public IP address is translated, for example via 1:1 NAT, and
forwarded to the respective local IP address of a resource
instance.

Some public IP addresses can be assigned by the provider
network infrastructure to particular resource instances; these
public IP addresses can be referred to as standard public IP
addresses, or simply standard IP addresses. In some
examples, the mapping of a standard IP address to a local IP
address of a resource instance is the default launch configu-
ration for all resource instance types.

At least some public IP addresses can be allocated to or
obtained by customers of the provider network 600; a
customer can then assign their allocated public IP addresses
to particular resource instances allocated to the customer.
These public IP addresses can be referred to as customer
public IP addresses, or simply customer IP addresses.
Instead of being assigned by the provider network 600 to
resource instances as in the case of standard IP addresses,
customer IP addresses can be assigned to resource instances
by the customers, for example via an API provided by the
service provider. Unlike standard IP addresses, customer 1P
addresses are allocated to customer accounts and can be
remapped to other resource instances by the respective
customers as necessary or desired. A customer IP address is
associated with a customer’s account, not a particular
resource instance, and the customer controls that IP address
until the customer chooses to release it. Unlike conventional
static IP addresses, customer IP addresses allow the cus-
tomer to mask resource instance or availability zone failures
by remapping the customer’s public IP addresses to any

US 12,348,529 B2

17

resource instance associated with the customer’s account.
The customer IP addresses, for example, enable a customer
to engineer around problems with the customer’s resource
instances or software by remapping customer IP addresses to
replacement resource instances.

FIG. 7 is a block diagram of an example provider network
environment that provides a storage service and a hardware
virtualization service to customers, according to some
examples. A hardware virtualization service 720 provides
multiple compute resources 724 (e.g., compute instances
725, such as VMs) to customers. The compute resources 724
can, for example, be provided as a service to customers of
a provider network 700 (e.g., to a customer that implements
a customer network 750). Each computation resource 724
can be provided with one or more local IP addresses. The
provider network 700 can be configured to route packets
from the local IP addresses of the compute resources 724 to
public Internet destinations, and from public Internet
sources to the local IP addresses of the compute resources
724.

The provider network 700 can provide the customer
network 750, for example coupled to an intermediate net-
work 740 via a local network 756, the ability to implement
virtual computing systems 792 via the hardware virtualiza-
tion service 720 coupled to the intermediate network 740
and to the provider network 700. In some examples, the
hardware virtualization service 720 can provide one or more
APIs 702, for example a web services interface, via which
the customer network 750 can access functionality provided
by the hardware virtualization service 720, for example via
a console 794 (e.g., a web-based application, standalone
application, mobile application, etc.) of a customer device
790. In some examples, at the provider network 700, each
virtual computing system 792 at the customer network 750
can correspond to a computation resource 724 that is leased,
rented, or otherwise provided to the customer network 750.

From an instance of the virtual computing system(s) 792
and/or another customer device 790 (e.g., via console 794),
the customer can access the functionality of a storage service
710, for example via the one or more APIs 702, to access
data from and store data to storage resources 718A-718N of
a virtual data store 716 (e.g., a folder or “bucket,” a
virtualized volume, a database, etc.) provided by the pro-
vider network 700. In some examples, a virtualized data
store gateway (not shown) can be provided at the customer
network 750 that can locally cache at least some data, for
example frequently accessed or critical data, and that can
communicate with the storage service 710 via one or more
communications channels to upload new or modified data
from a local cache so that the primary store of data (the
virtualized data store 716) is maintained. In some examples,
a user, via the virtual computing system 792 and/or another
customer device 790, can mount and access virtual data store
716 volumes via the storage service 710 acting as a storage
virtualization service, and these volumes can appear to the
user as local (virtualized) storage 798.

While not shown in FIG. 7, the virtualization service(s)
can also be accessed from resource instances within the
provider network 700 via the API(s) 702. For example, a
customer, appliance service provider, or other entity can
access a virtualization service from within a respective
virtual network on the provider network 700 via the API(s)
702 to request allocation of one or more resource instances
within the virtual network or within another virtual network.

In some examples, a system that implements a portion or
all of the techniques described herein can include a general-
purpose computer system, such as the computer system 800

10

15

20

25

30

35

40

45

50

55

60

65

18

illustrated in FIG. 8, that includes, or is configured to access,
one or more computer-accessible media. In the illustrated
example, the computer system 800 includes one or more
processors 810 coupled to a system memory 820 via an
input/output (I/O) interface 830. The computer system 800
further includes a network interface 840 coupled to the /O
interface 830. While FIG. 8 shows the computer system 800
as a single computing device, in various examples the
computer system 800 can include one computing device or
any number of computing devices configured to work
together as a single computer system 800.

In various examples, the computer system 800 can be a
uniprocessor system including one processor 810, or a
multiprocessor system including several processors 810
(e.g., two, four, eight, or another suitable number). The
processor(s) 810 can be any suitable processor(s) capable of
executing instructions. For example, in various examples,
the processor(s) 810 can be general-purpose or embedded
processors implementing any of a variety of instruction set
architectures (ISAs), such as the x86, ARM, PowerPC,
SPARC, or MIPS ISAs, or any other suitable ISA. In
multiprocessor systems, each of the processors 810 can
commonly, but not necessarily, implement the same ISA.

The system memory 820 can store instructions and data
accessible by the processor(s) 810. In various examples, the
system memory 820 can be implemented using any suitable
memory technology, such as random-access memory
(RAM), static RAM (SRAM), synchronous dynamic RAM
(SDRAM), nonvolatile/Flash-type memory, or any other
type of memory. In the illustrated example, program instruc-
tions and data implementing one or more desired functions,
such as those methods, techniques, and data described
above, are shown stored within the system memory 820 as
policy refiner service code 825 (e.g., executable to imple-
ment, in whole or in part, the policy refiner service 150) and
data 826.

In some examples, the I/O interface 830 can be configured
to coordinate 1/O traffic between the processor 810, the
system memory 820, and any peripheral devices in the
device, including the network interface 840 and/or other
peripheral interfaces (not shown). In some examples, the I/O
interface 830 can perform any necessary protocol, timing, or
other data transformations to convert data signals from one
component (e.g., the system memory 820) into a format
suitable for use by another component (e.g., the processor
810). In some examples, the I/O interface 830 can include
support for devices attached through various types of periph-
eral buses, such as a variant of the Peripheral Component
Interconnect (PCI) bus standard or the Universal Serial Bus
(USB) standard, for example. In some examples, the func-
tion of the I/O interface 830 can be split into two or more
separate components, such as a north bridge and a south
bridge, for example. Also, in some examples, some or all of
the functionality of the 1/O interface 830, such as an inter-
face to the system memory 820, can be incorporated directly
into the processor 810.

The network interface 840 can be configured to allow data
to be exchanged between the computer system 800 and other
devices 860 attached to a network or networks 850, such as
other computer systems or devices as illustrated in FIG. 1,
for example. In various examples, the network interface 840
can support communication via any suitable wired or wire-
less general data networks, such as types of Ethernet net-
work, for example. Additionally, the network interface 840
can support communication via telecommunications/tele-
phony networks, such as analog voice networks or digital
fiber communications networks, via storage area networks

US 12,348,529 B2

19
(SANs), such as Fibre Channel SANs, and/or via any other
suitable type of network and/or protocol.

In some examples, the computer system 800 includes one
or more offload cards 870A or 870B (including one or more
processors 875, and possibly including the one or more
network interfaces 840) that are connected using the 1/O
interface 830 (e.g., a bus implementing a version of the
Peripheral Component Interconnect-Express (PCI-E) stan-
dard, or another interconnect such as a QuickPath intercon-
nect (QPI) or UltraPath interconnect (UPI)). For example, in
some examples the computer system 800 can act as a host
electronic device (e.g., operating as part of a hardware
virtualization service) that hosts compute resources such as
compute instances, and the one or more offload cards 870A
or 870B execute a virtualization manager that can manage
compute instances that execute on the host electronic device.
As an example, in some examples the offload card(s) 870A
or 870B can perform compute instance management opera-
tions, such as pausing and/or un-pausing compute instances,
launching and/or terminating compute instances, performing
memory transfer/copying operations, etc. These manage-
ment operations can, in some examples, be performed by the
offload card(s) 870A or 870B in coordination with a hyper-
visor (e.g., upon a request from a hypervisor) that is
executed by the other processors 810A-810N of the com-
puter system 800. However, in some examples the virtual-
ization manager implemented by the offload card(s) 870A or
870B can accommodate requests from other entities (e.g.,
from compute instances themselves), and can not coordinate
with (or service) any separate hypervisor.

In some examples, the system memory 820 can be one
example of a computer-accessible medium configured to
store program instructions and data as described above.
However, in other examples, program instructions and/or
data can be received, sent, or stored upon different types of
computer-accessible media. Generally speaking, a com-
puter-accessible medium can include any non-transitory
storage media or memory media such as magnetic or optical
media, e.g., disk or DVD/CD coupled to the computer
system 800 via the I/O interface 830. A non-transitory
computer-accessible storage medium can also include any
volatile or non-volatile media such as RAM (e.g., SDRAM,
double data rate (DDR) SDRAM, SRAM, etc.), read only
memory (ROM), etc., that can be included in some examples
of the computer system 800 as the system memory 820 or
another type of memory. Further, a computer-accessible
medium can include transmission media or signals such as
electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a
wireless link, such as can be implemented via the network
interface 840.

Various examples discussed or suggested herein can be
implemented in a wide variety of operating environments,
which in some cases can include one or more user comput-
ers, computing devices, or processing devices which can be
used to operate any of a number of applications. User or
client devices can include any of a number of general-
purpose personal computers, such as desktop or laptop
computers running a standard operating system, as well as
cellular, wireless, and handheld devices running mobile
software and capable of supporting a number of networking
and messaging protocols. Such a system also can include a
number of workstations running any of a variety of com-
mercially available operating systems and other known
applications for purposes such as development and database
management. These devices also can include other elec-

10

15

20

25

30

35

40

45

50

55

60

65

20

tronic devices, such as dummy terminals, thin-clients, gam-
ing systems, and/or other devices capable of communicating
via a network.

Most examples use at least one network that would be
familiar to those skilled in the art for supporting communi-
cations using any of a variety of widely-available protocols,
such as Transmission Control Protocol/Internet Protocol
(TCP/IP), File Transfer Protocol (FTP), Universal Plug and
Play (UPnP), Network File System (NFS), Common Inter-
net File System (CIFS), Extensible Messaging and Presence
Protocol (XMPP), AppleTalk, etc. The network(s) can
include, for example, a local area network (LAN), a wide-
area network (WAN), a virtual private network (VPN), the
Internet, an intranet, an extranet, a public switched telephone
network (PSTN), an infrared network, a wireless network,
and any combination thereof.

In examples using a web server, the web server can run
any of a variety of server or mid-tier applications, including
HTTP servers, File Transfer Protocol (FTP) servers, Com-
mon Gateway Interface (CGI) servers, data servers, Java
servers, business application servers, etc. The server(s) also
can be capable of executing programs or scripts in response
requests from user devices, such as by executing one or
more Web applications that can be implemented as one or
more scripts or programs written in any programming lan-
guage, such as Java®, C, C# or C++, or any scripting
language, such as Perl, Python, PHP, or TCL, as well as
combinations thereof. The server(s) can also include data-
base servers, including without limitation those commer-
cially available from Oracle®, Microsoft®, Sybase®,
IBM®, etc. The database servers can be relational or non-
relational (e.g., “NoSQL”), distributed or non-distributed,
etc.

Environments disclosed herein can include a variety of
data stores and other memory and storage media as dis-
cussed above. These can reside in a variety of locations, such
as on a storage medium local to (and/or resident in) one or
more of the computers or remote from any or all of the
computers across the network. In a particular set of
examples, the information can reside in a storage-area
network (SAN) familiar to those skilled in the art. Similarly,
any necessary files for performing the functions attributed to
the computers, servers, or other network devices can be
stored locally and/or remotely, as appropriate. Where a
system includes computerized devices, each such device can
include hardware elements that can be electrically coupled
via a bus, the elements including, for example, at least one
central processing unit (CPU), at least one input device (e.g.,
a mouse, keyboard, controller, touch screen, or keypad),
and/or at least one output device (e.g., a display device,
printer, or speaker). Such a system can also include one or
more storage devices, such as disk drives, optical storage
devices, and solid-state storage devices such as random-
access memory (RAM) or read-only memory (ROM), as
well as removable media devices, memory cards, flash cards,
etc.

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device, etc.), and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed,
and/or removable storage devices as well as storage media
for temporarily and/or more permanently containing, stor-
ing, transmitting, and retrieving computer-readable informa-
tion. The system and various devices also typically will

US 12,348,529 B2

21

include a number of software applications, modules, ser-
vices, or other elements located within at least one working
memory device, including an operating system and appli-
cation programs, such as a client application or web browser.
It should be appreciated that alternate examples can have
numerous variations from that described above. For
example, customized hardware might also be used and/or
particular elements might be implemented in hardware,
software (including portable software, such as applets), or
both. Further, connection to other computing devices such as
network input/output devices can be employed.

Storage media and computer readable media for contain-
ing code, or portions of code, can include any appropriate
media known or used in the art, including storage media and
communication media, such as but not limited to volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage and/or
transmission of information such as computer readable
instructions, data structures, program modules, or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (EEPROM), flash memory or other
memory technology, Compact Disc-Read Only Memory
(CD-ROM), Digital Versatile Disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by a system device. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the various examples.

In the preceding description, various examples are
described. For purposes of explanation, specific configura-
tions and details are set forth in order to provide a thorough
understanding of the examples. However, it will also be
apparent to one skilled in the art that the examples can be
practiced without the specific details. Furthermore, well-
known features can be omitted or simplified in order not to
obscure the example being described.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, and dots) are used herein to
illustrate optional aspects that add additional features to
some examples. However, such notation should not be taken
to mean that these are the only options or optional opera-
tions, and/or that blocks with solid borders are not optional
in certain examples.

Reference numerals with suffix letters (e.g., 718A-718N)
can be used to indicate that there can be one or multiple
instances of the referenced entity in various examples, and
when there are multiple instances, each does not need to be
identical but may instead share some general traits or act in
common ways. Further, the particular suffixes used are not
meant to imply that a particular amount of the entity exists
unless specifically indicated to the contrary. Thus, two
entities using the same or different suffix letters might or
might not have the same number of instances in various
examples.

References to “one example,” “an example,” etc., indicate
that the example described may include a particular feature,
structure, or characteristic, but every example may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same example. Further, when a particular feature,
structure, or characteristic is described in connection with an
example, it is submitted that it is within the knowledge of
one skilled in the art to affect such feature, structure, or
characteristic in connection with other examples whether or
not explicitly described.

29 <

20

25

30

40

45

55

60

22

Moreover, in the various examples described above,
unless specifically noted otherwise, disjunctive language
such as the phrase “at least one of A, B, or C” is intended to
be understood to mean either A, B, or C, or any combination
thereof (e.g., A, B, and/or C). Similarly, language such as “at
least one or more of A, B, and C” (or “one or more of A, B,
and C”) is intended to be understood to mean A, B, or C, or
any combination thereof (e.g., A, B, and/or C). As such,
disjunctive language is not intended to, nor should it be
understood to, imply that a given example requires at least
one of A, at least one of B, and at least one of C to each be
present.

As used herein, the term “based on” (or similar) is an
open-ended term used to describe one or more factors that
affect a determination or other action. It is to be understood
that this term does not foreclose additional factors that may
affect a determination or action. For example, a determina-
tion may be solely based on the factor(s) listed or based on
the factor(s) and one or more additional factors. Thus, if an
action A is “based on” B, it is to be understood that B is one
factor that affects action A, but this does not foreclose the
action from also being based on one or multiple other
factors, such as factor C. However, in some instances, action
A may be based entirely on B.

Unless otherwise explicitly stated, articles such as “a” or
an” should generally be interpreted to include one or
multiple described items. Accordingly, phrases such as “a
device configured to” or “a computing device” are intended
to include one or multiple recited devices. Such one or more
recited devices can be collectively configured to carry out
the stated operations. For example, “a processor configured
to carry out operations A, B, and C” can include a first
processor configured to carry out operation A working in
conjunction with a second processor configured to carry out
operations B and C.

Further, the words “may” or “can” are used in a permis-
sive sense (i.e., meaning having the potential to), rather than
the mandatory sense (i.e., meaning must). The words
“include,” “including,” and “includes™ are used to indicate
open-ended relationships and therefore mean including, but
not limited to. Similarly, the words “have,” “having,” and
“has” also indicate open-ended relationships, and thus mean
having, but not limited to. The terms “first,” “second,”
“third,” and so forth as used herein are used as labels for the
nouns that they precede, and do not imply any type of
ordering (e.g., spatial, temporal, logical, etc.) unless such an
ordering is otherwise explicitly indicated. Similarly, the
values of such numeric labels are generally not used to
indicate a required amount of a particular noun in the claims
recited herein, and thus a “fifth” element generally does not
imply the existence of four other elements unless those
elements are explicitly included in the claim or it is other-
wise made abundantly clear that they exist.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes can be made thereunto without departing from the
broader scope of the disclosure as set forth in the claims.

13

What is claimed is:

1. A computer-implemented method comprising:

obtaining, by a policy refiner service of a cloud provider
network, a log of events related to activity associated
with an account of the cloud provider network, wherein
an event in the log of events indicates an action
performed relative to a resource of the cloud provider
network;

US 12,348,529 B2

23

identifying a policy associated with the account, wherein
the policy includes a statement defining a permission
associated with the account, wherein the statement
includes a plurality of field values defining the permis-
sion, and wherein a particular field value of the plural-
ity of field values identifies one of: a type of action the
policy allows or denies, a resource to which the state-
ment relates, or a condition for granting the permission;

identifying, from the log of events, a plurality of events
indicating actions that were permitted based on the
statement by parsing the plurality of events from the
log of events and mapping individual events from the
log of events to the statement from the policy that
caused an identity and access management service to
permit requests represented by the individual events;

identifying a plurality of event values from the plurality of
events corresponding to the particular field value in the
statement;

generating, based on the plurality of event values, a
modified field value, wherein the modified field value
is generated using a field-specific abstraction algo-
rithm, and wherein the modified field value is more
restrictive than the particular field value;

determining, using a policy property analyzer, that a
modified policy including the modified field value is
more restrictive than the policy with the particular field
value, wherein the policy property analyzer uses a
Satisfiability Modulo Theories (SMT) solver to deter-
mine that the modified policy including the modified
field value is more restrictive than the policy with the
particular field value; and

causing display of a suggested modification to the policy
based on the modified field value, wherein the sug-
gested modification to the policy would result in the
modified policy including the modified field value.

2. The computer-implemented method of claim 1, further

comprising:

invoking execution of the field-specific abstraction algo-
rithm across two or more computing resources, wherein
each of the two or more computing resources operates
on a subset of the plurality of events; and

combining results generated by the two or more comput-
ing resources to obtain the modified field value.

3. The computer-implemented method of claim 1, further

comprising:

receiving input requesting to accept the suggested modi-
fication to the policy; and

storing, in association with the account, a modified ver-
sion of the policy including the modified field value.

4. A computer-implemented method comprising:

obtaining a log of events related to activity associated
with an account of a computing system;

identifying a policy associated with the account, wherein
the policy includes a statement defining a permission
associated with the account, and wherein the statement
includes a plurality of field values defining the permis-
sion;

identifying, from the log of events, a plurality of events
indicating actions that were permitted based on the
statement by parsing the plurality of events from the
log of events and mapping individual events from the
log of events to the statement from the policy that
caused an identity and access management service to
permit requests represented by the individual events;

identifying a plurality of event values from the plurality of
events corresponding to a particular field value of the
plurality of field values in the statement;

15

25

35

40

45

50

55

60

65

24

generating, based on the plurality of event values, a
modified field value, wherein the modified field value
is generated using a field-specific abstraction algo-
rithm, and wherein the modified field value is more
restrictive than the particular field value;

determining, using a policy property analyzer, that a
modified policy including the modified field value is
more restrictive than the policy with the particular field
value, wherein the policy property analyzer uses a
Satisfiability Modulo Theories (SMT) solver to deter-
mine that the modified policy including the modified
field value is more restrictive than the policy with the
particular field value; and

causing display of a suggested modification to the policy
based on the modified field value, wherein the sug-
gested modification to the policy would result in the
modified policy including the modified field value.

5. The computer-implemented method of claim 4, further

comprising:

invoking execution of the field-specific abstraction algo-
rithm across two or more computing resources, wherein
each of the two or more computing resources operates
on a subset of the plurality of events; and

combining results generated by the two or more comput-
ing resources to obtain the modified field value.

6. The computer-implemented method of claim 4, further

comprising:

receiving input requesting to accept the suggested modi-
fication to the policy; and

storing, in association with the account, a modified ver-
sion of the policy including the modified field value.

7. The computer-implemented method of claim 4, further
comprising:

receiving a request to analyze the policy, wherein the
request identifies a time range of the log of events to
obtain; and

wherein obtaining the log of events includes obtaining
events within the time range.

8. The computer-implemented method of claim 4,
wherein a particular field value of the plurality of field
values identifies one of: a type of action the policy allows or
denies, a resource to which the statement relates, or a
condition for granting the permission.

9. The computer-implemented method of claim 4,
wherein the particular field value of the plurality of field
values identifies a first range of Internet Protocol (IP)
addresses, and wherein the field-specific abstraction algo-
rithm generates the modified field value by:

determining a second range of IP addresses that includes
IP addresses contained in the plurality of events corre-
sponding to the particular field value;

determining that the second range of IP addresses includes
fewer IP addresses than the first range of IP addresses;
and

using the second range of IP addresses as the modified
field value.

10. The computer-implemented method of claim 4,
wherein the particular field value of the plurality of field
values identifies a first plurality of actions, and wherein the
field-specific abstraction algorithm generates the modified
field value by:

identifying one or more second actions contained in the
plurality of events corresponding to the particular field
value;

determining that the one or more second actions is fewer
than the first plurality of actions; and

US 12,348,529 B2

25

generating the modified field value by enumerating the
one or more second actions in the modified field value.

11. The computer-implemented method of claim 4,
wherein the particular field value of the plurality of field
values is a first resource identifier identifying a plurality of
resources, and wherein the field-specific abstraction algo-
rithm generates the modified field value by:

identifying a plurality of second resource identifiers con-
tained in the plurality of events corresponding to the
particular field value;

identifying, using the plurality of second resource iden-
tifiers, a third resource identifier based on at least one
of: a longest common prefix of the plurality of second
resource identifiers, or a longest common suffix of the
plurality of second resource identifiers;

determining that the third resource identifier is more
restrictive than the first resource identifier; and

using the third resource identifier as the modified field
value.

12. The computer-implemented method of claim 4, fur-

ther comprising:
obtaining, using the policy property analyzer, an identifier
of an action that is permitted by the policy without the
modified field value but is not permitted by the modi-
fied policy including the modified field value, wherein
the policy property analyzer uses the SMT solver to
determine that the action is permitted by the policy
without the modified field value but is not permitted by
the modified policy including the modified field value;
and
causing display of the identifier of the action.
13. The computer-implemented method of claim 4,
wherein the suggested modification to the policy is dis-
played in a graphical user interface (GUI) displaying dif-
ferences between the policy with the particular field value
and the modified policy including the modified field value.
14. A system comprising:
a first one or more electronic devices to implement a
policy refiner service in a cloud provider network,
wherein the policy refiner service includes instructions
that upon execution cause the policy refiner service to:
obtain, from an account activity logging service of the
cloud provider network, a log of events related to
activity associated with an account of a computing
system,

identify a policy associated with the account, wherein
the policy includes a statement defining a permission
associated with the account, and wherein the state-
ment includes a plurality of field values defining the
permission;

identify, from the log of events, a plurality of events
indicating actions that were permitted based on the
statement by parsing the plurality of events from the
log of events and mapping individual events from the
log of events to the statement from the policy that
caused an identity and access management service to
permit requests represented by the individual events;

identify a plurality of event values from the plurality of
events corresponding to a particular field value of the
plurality of field values in the statement;

generate, based on the plurality of event values, a
modified field value, wherein the modified field
value is generated using a field-specific abstraction
algorithm, and wherein the modified field value is
more restrictive than the particular field value;

determine, using a policy property analyzer, that a
modified policy including the modified field value is

10

15

20

25

30

35

40

45

50

55

o

5

26

more restrictive than the policy with the particular
field value, wherein the policy property analyzer
uses a Satisfiability Modulo Theories (SMT) solver
to determine that the modified policy including the
modified field value is more restrictive than the
policy with the particular field value; and

cause display of a suggested modification to the policy
based on the modified field value, wherein the sug-
gested modification to the policy would result in the
modified policy including the modified field value;
and

a second one or more electronic devices to implement the

account activity logging service in the cloud provider

network, the account activity logging service including

instructions that upon execution cause the account

activity logging service to:

generate the log of events related to activity associated
with an account of the cloud provider network; and

provide the log of events to the policy refiner service.

15. The system of claim 14, wherein the policy refiner
service further includes instructions that upon execution
cause the policy refiner service to:

invoke execution of the field-specific abstraction algo-

rithm across two or more computing resources, wherein
each of the two or more computing resources operates
on a subset of the plurality of events; and

combine results generated by the two or more computing

resources to obtain the modified field value.

16. The system of claim 14, wherein the policy refiner
service further includes instructions that upon execution
cause the policy refiner service to:

receive input requesting to accept the suggested modifi-

cation to the policy; and

store, in association with the account, a modified version

of the policy including the modified field value.

17. The system of claim 14, wherein the policy refiner
service further includes instructions that upon execution
cause the policy refiner service to:

receive a request to analyze the policy, wherein the

request identifies at least one of: a time range of the log
of events to obtain, or an indication of one or more user
accounts to analyze: and

wherein obtaining the log of events includes obtaining

events within the time range or associated with the one
or more user accounts.

18. The system of claim 14, wherein a particular field
value of the plurality of field values identifies one of: a type
of action the policy allows or denies, a resource to which the
statement relates, or a condition for granting the permission.

19. The system of claim 14, wherein the particular field
value of the plurality of field values identifies a first range of
Internet Protocol (IP) addresses, and wherein the field-
specific abstraction algorithm generates the modified field
value by:

determining a second range of IP addresses that includes

IP addresses contained in the plurality of events corre-
sponding to the particular field value;

determining that the second range of IP addresses includes

fewer IP addresses than the first range of IP addresses;
and

using the second range of IP addresses as the modified

field value.

20. The system of claim 14, wherein the particular field
value of the plurality of field values identifies a first plurality
of actions, and wherein the field-specific abstraction algo-
rithm generates the modified field value by:

US 12,348,529 B2
27 28

identifying one or more second actions contained in the
plurality of events corresponding to the particular field
value;

determining that the one or more second actions is fewer
than the first plurality of actions; and 5

generating the modified field value by enumerating the
one or more second actions in the modified field value.

#* #* #* #* #*

