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Concurrency
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• Concurrency is the ability to execute different parts or units of a program in an 
interleaved manner

Example: many users deposit/withdraw money through bank systems concurrently.



Concurrent

Software
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Main thread

Responding 
to a click

Responding 
to a button

Interrupt 
for radar 
sensorInterrupt 

for gas 
sensor



Testing/Verification of concurrent software
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Concurrent
Program

Testing/Verification Methods

Provide actual interleavings in bug detection (soundness), but 
hard to explore all possible interleavings (not completeness)
Ex) Test case generation

Enumerating interleavings

Merging interleavings
It covers all possible interleavings (completeness), but it is 
hard to provide accurate bug detection (not soundness)
Ex) Abstract interpretation



Enumerating interleavings - example
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I1() {
x = 1;

}

I2() {
y = x;

}

I3() {
a = x;

}

I4() {
b = y;

}

I1 I2 I3 I4

I1 I2 I4 I3

I1 I3 I2 I4

Possible event sequences: 4!

With N events: N!
state explosion



Merging interleavings - example
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Abstract value: Y=[0, 10]

I1() {
lock(a);
if (…) 

x = 10;
x = 1;
unlock(a);

}

I2() {
lock(a);
y = x;
unlock(a);

}

Init. x = 0;

Y=XX=0Possible interleaving 1

Y=XX=10Possible interleaving 2

Y=XX=1Possible interleaving 3

Y=XX=0, 1, 10
Merging 

interleavings for Y

Values 2~9 will never occur



Testing/Verification of concurrent software
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Concurrent
Program

Testing/Verification Methods

Can we make them better?
- Can we provide better interleaving 

exploration for enumeration?
- Can we provide more accurate 

program states for merging?

Enumerating interleavings

Merging interleavings

Sound, not complete

Complete, not sound



Analysis of interference between concurrent 
events
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I1 I2

Feasible interference

- Executing concurrent event I1 affects a program 
state of running event I2 

(Example: a value written by I1 is read by I2)

I1 I2

Infeasible interference

- Executing concurrent event I1 does not affect a 
program state of running event I2 

(Example: any values written by I1 are not 
read/written by I2)

Feasible/infeasible interference can 
be used to improve testing and 
verification of concurrent software



Enumerating interleavings with the analysis -
example
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I1() {
x = 1;

}

I2() {
y = x;

}

I3() {
a = x;

}

I4() {
b = y;

}

I1 I2 I3 I4

I1 I2 I4 I3

I1 I3 I2 I4

“I3 and I4” do not affect each other’s program state



Merging interleavings with the analysis -
example
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Abstract value: Y=[0, 1]
Y=XX=0Possible interleaving 1

Y=XX=10Possible interleaving 2

Y=XX=1Possible interleaving 3

Y=XX=0, 1

“x=10  -> y = x” never 
happens due to the lock pairs

Merging 
interleavings for Y

Abstract value: Y=[0, 10]

I1() {
lock(a);
if (…) 

x = 10;
x = 1;
unlock(a);

}

I2() {
lock(a);
y = x;
unlock(a);

}

Init. x = 0;



Dissertation outline

• Problem

• It is hard to achieve completeness or soundness for testing and verification of 
concurrent software due to “State explosion” in concurrent software

• Hypothesis

• Analysis of interference between concurrent events improves 
testing/verification techniques for concurrent software

• Solution

• We customize constraint-based program analysis to analyze interference 
between concurrent events

• Demonstration

• We validate the hypothesis with three important testing/verification applications

12



• Background & Motivation

• Proposed method

• Customized constraint-based analysis for concurrent software

• Three applications

• More accurate assertion checking for interrupt-driven software

[Sung et al., ASE 2017]

• More scalable semantic diffing of multi-threaded programs

[Sung et al., ASE 2018]

• More efficient testing web applications

[Sung et al., FSE 2016]

• Conclusion

13



Use of constraint-based program analysis
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Concurrent
Program

Testing/Verification methods

Constraint-based program analysis
- Analyzing interference between 

concurrent events

Using off-the-shelf solver

Plug-in for achieving more 
scalable or more accurate 
results

Advantages?
1. Separate program analysis from actual 

verification/testing implementation
2. The interference information we compute can 

be useful for different applications



How do we compute the interference?

• Constraint-based program analysis
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Constraint 
Solver

(Datalog)

Facts: Constraints of 
program information

Rules: Analysis rules for 
interference between 

concurrent events

Feasible/infeasible interference 
between concurrent events

- [Whaley & Lam, PLDI 2004], [Livshits & Lam, USENIX 2005], [Naik et al. PLDI 2006]

Datalog?
- Declarative language for deductive database
- Polynomial-time solvable
- Fixed-point computation -> well-matched with program analysis 

algorithms
- Program analysis can be implemented with shorter lines of code

We customize our rules and facts



Computing interference with Datalog - example

I1( ) {
1: x = true;
};

I2 ( ) {
2: if (x) {
3: stmt1;
4: } else {
5: stmt2;
6: }
};

16

1. Write(var1, line1) & Read (var1, line2) -> Data-dep(line1, line2)
2. Data-dep(line1, line2) & St(line1, event1) & St(line2, event2)

-> Interfere(event1, event2)

Datalog facts

Datalog rules

St (1, I1)Write (x, 1)

St (2, I2)Read (x, 2)

Interference from I1 to I2

New Facts



Computing interference with Datalog - example

I1( ) {
1: x = true;
};

I2 ( ) {
2: if (x) {
3: stmt1;
4: } else {
5: stmt2;
6: }
};
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St (1, I1)Write (x, 1)

Datalog facts

Datalog rules

1. Write(var1, line1) & Read (var1, line2) -> Data-dep(line1, line2)
2. Data-dep(line1, line2) & St(line1, event1) & St(line2, event2)

-> Interfere(event1, event2)

St (2, I2)Read (x, 2)

Interference from I1 to I2

New Facts

Data-dep (1, 2)



Computing interference with Datalog - example

I1( ) {
1: x = true;
};

I2 ( ) {
2: if (x) {
3: stmt1;
4: } else {
5: stmt2;
6: }
};
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St (1, I1)Write (x, 1)

Datalog facts

Datalog rules

1. Write(var1, line1) & Read (var1, line2) -> Data-dep(line1, line2)
2. Data-dep(line1, line2) & St(line1, event1) & St(line2, event2)

-> Interfere(event1, event2)

St (2, I2)Read (x, 2)

Interference from I1 to I2

New Facts

Data-dep (1, 2)

Interfere (I1, I2)

I1 I2

interfere

We make specialized rules to analyze 
feasible/infeasible interference



• Background & Motivation

• Proposed method

• Customized constraint-based analysis for concurrent software

• Three applications

• More accurate assertion checking for interrupt-driven software

[Sung et al., ASE 2017]

• More scalable semantic diffing of multi-threaded programs

[Sung et al., ASE 2018]

• More efficient testing web applications

[Sung et al., FSE 2016]

• Conclusion

19



Applications that validate the hypothesis
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Important 
Software 

Engineering 
problems

Solving 
concurrent 
problems

- Verification of interrupt-driven programs
- Semantic diffing of concurrent programs for program changes
- Testing of web applications

Need to 
improve 

soundness/
completeness



Desired applications with the framework

• Verification of interrupt-driven software

• Problem: merging interleavings -> not accurate enough

• Analysis: Infeasible interferences between interrupts

• Result: More accurate verification

• Semantic diffing of concurrent programs

• Problem: enumerating interleavings -> not scalable enough

• Analysis: Infeasible interferences between threads

• Result: More scalable semantic diffing for program changes

• Testing of web applications

• Problem: enumerating interleavings -> not efficient enough

• Analysis: Feasible interferences between events

• Result: More efficient testing web applications

21



Overview
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Plug-in to any method

Program Testing/Verification methods

Constraint-based program analysis



Application (1)
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More accurate

Program Testing/Verification methods

Constraint-based program analysis

Interrupt-driven
programs

Infeasible interferences 
between interrupts

Modular abstract 
interpretation



Application (2)
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Program Testing/Verification methods

Constraint-based program analysis

Multi-threaded
programs

Infeasible interferences 
between threads

Semantic diffing for 
program changes

More scalable



Application (3)
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Program Testing/Verification methods

Constraint-based program analysis

Web applications

Feasible interferences
between events

Testing with test 
generation

More efficient



• Background & Motivation

• Proposed method

• Customized constraint-based analysis for concurrent software

• Three applications

• More accurate assertion checking for interrupt-driven software

[Sung et al., ASE 2017]

• More scalable semantic diffing of multi-threaded programs

[Sung et al., ASE 2018]

• More efficient testing web applications

[Sung et al., FSE 2016]

• Conclusion
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Application (1) - revisit
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Accuracy ↑

Program Testing/Verification methods

Constraint-based program analysis

Interrupt-driven
programs

Infeasible interferences 
between interrupts

Modular abstract 
interpretation

What is infeasible 
interference?



Understanding the basic interrupt behavior
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Task 1 Task 2T1 T2

Multi-threaded programs
(Any preemption between threads 

can happen)

I1 I2

Interrupts
(Lower priority interrupt cannot preempt 

higher priority interrupt)

Priority
I1 < I2

Finish of 
task 2

Concurrent Tasks



Infeasible interference – example

Irq_L() {
assert(x == 0);

};

Irq_H() {
if(…)

x = 1;
x = 0;

};

29

Multi-threaded scheduling
- The read-from is feasible

x = 1;

Irq_L Irq_H

assert(x==0)

x = 0;



Infeasible interference – example

Irq_L() {
assert(x == 0);

};

Irq_H() {
if(…)

x = 1;
x = 0;

};

Post-dominate

30

Priority: L  <  H

Interrupt with priority information
- The read-from is NOT feasible x = 1;

Irq_L Irq_H

assert(x==0);
x = 0;

Irq_L cannot preempt Irq_H



Application (1) - revisit
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Accuracy ↑

Program Testing/Verification methods

Constraint-based program analysis

Interrupt-driven
programs

Infeasible interferences 
between interrupts

Modular abstract 
interpretation

How do we 
compute?



Example for computing infeasible interference
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Irq_L() {
1: assert(x == 0);

};

Irq_H() {
2:   if(…)
3:     x = 1;
4:   x = 0;

};

read(x, 1)

st(1, Irq_L)

write(x, 3)

st(3, Irq_H)

write(x, 4)

st(4, Irq_H)

postDom(4, 3)

Datalog

facts

Priority information

Irq_L < Irq_H
Datalog rules
- Finding patterns for 
infeasible interferences

Constraint 
Solver

(Datalog)

Infeasible-readFrom(3, 1)



Application (1) - revisit
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Accuracy ↑

Program Testing/Verification methods

Constraint-based program analysis

Interrupt-driven
programs

Infeasible interferences 
between interrupts

Modular abstract 
interpretation

How does this work?



Modular abstract interpretation
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Thread 1 Thread 2

Read(x)

Write(x)

[Miné, VMCAI 2014]

Read(y)

Write(y)

Step1 
- Run abstract interpretation for each thread as if it 

is a sequential program
Step 2
- Propagate the abstract value to other threads as 

if there is an interference
Step 3
- If any value is changed, go to step 1

else terminate
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Thread 1 Thread 2

Read(x)

Write(x)

Read(y)

Write(y)

[0, 1]

[0, 3]

[0, 1]

[0, 1]

Step1 
- Run abstract interpretation for each thread as if it 

is a sequential program
Step 2
- Propagate the abstract range of a value to other 

threads as if there is interference
Step 3
- If any value is changed, go to step 1 or terminate

Modular abstract interpretation [Miné, VMCAI 2014]
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Thread 1 Thread 2

Read(x)

Write(x)

Read(y)

Write(y)

[0, 1]

[0, 3]

[0, 1]

[0, 1]

Step1 
- Run abstract interpretation for each thread as if it 

is a sequential program
Step 2
- Propagate the abstract range of a value to other 

threads as if there is interference
Step 3
- If any value is changed, go to step 1 or terminate

Modular abstract interpretation [Miné, VMCAI 2014]
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Thread 1 Thread 2

Read(x)

Write(x)

Read(y)

Write(y)

[0, 3]

[0, 3]

[0, 1]

Step1 
- Run abstract interpretation for each thread as if it 

is a sequential program
Step 2
- Propagate the abstract range of a value to other 

threads as if there is interference
Step 3
- If any value is changed, go to step 1 or terminate

Modular abstract interpretation [Miné, VMCAI 2014]
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Thread 1 Thread 2

Read(x)

Write(x)

Read(y)

Write(y)

[0, 3]

Step1 
- Run abstract interpretation for each thread as if it 

is a sequential program
Step 2
- Propagate the abstract range of a value to other 

threads as if there is interference
Step 3
- If any value is changed, go to step 1 or terminate

Modular abstract interpretation [Miné, VMCAI 2014]



Application (1) - revisit
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Accuracy ↑

Program Testing/Verification methods

Constraint-based program analysis

Interrupt-driven
programs

Infeasible interferences 
between interrupts

Modular abstract 
interpretation

How do we apply 
infeasible interferences?



Modular abstract interpretation with infeasible 
interference
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Thread 1 Thread 2

Read(x)

Write(x)

Step1 
- Run abstract interpretation for each thread as if it 

is a sequential program
Step 2
- Propagate the abstract range of a value to other 

threads as if there is interference
Step 3
- If any value is changed, go to step 1 or terminate

Read(y)

Write(y)

[0, 1]

[0, 3]

[0, 1]

[0, 1]

What if this read-from is infeasible 
under interrupt behavior?



Modular abstract interpretation with infeasible 
interference
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Thread 1 Thread 2

Read(x)

Write(x)

Step1 
- Run abstract interpretation for each thread as if it 

is a sequential program
Step 2
- Propagate the abstract range of a value to other 

threads as if there is interference
Step 3
- If any value is changed, go to step 1 or terminate

Read(y)

Write(y)

[0, 1]

[0, 3]

[0, 1]

[0, 1]

It will terminate with more 
accurate abstract value



Under-approximation of infeasible interference
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-> All visible interferences in thread models (considered for the previous 
verification method)

-> Infeasible read-from edges with specific patterns (Our analysis)
It is subset of all infeasible read-from edges (dashed circle)

-> Considering this space, the verification may not filter all infeasible read-
from edges, but it guarantees to not miss feasible interferences.



Checking feasibility during the process

read-from1

Infeasible interference
- read-from1, read-from3

Modular abstract interpretation

43

read-from2

read-from3

read-from4

read-from4

read-from2

Query every 
time at step 2

Only feasible 
interferences 
are passed to 
other threads



Experimental setup for Application (1)
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• Purpose

• Are there many infeasible edges?

• Do we improve accuracy by removing false positives (and obtaining more proofs) ? 

• Benchmarks

• Control software, firmware and device drivers considered in previous multi-
threaded/interrupt verification approaches
[Miné VMCAI 2014, Kusano et al. FSE 2017, Kroening et al. Date 2015]



Summary

Num. of benchmarks 35

Total LOC 22,541 lines

Analysis Time 64.21s

69% of total edges are infeasible

Total num. of read-from edges
(Thread behavior)

Num. of read-from edges filtered
(Interrupt behavior)

5,116 3,560

45

Result of finding infeasible edges under 
interrupt behavior



Prior works used for comparison

• Modular abstract interpretation for multi-threaded programs 
[Miné, VMCAI 2014]

• CBMC-based interrupt verification (reports only violations)
[Kroening et al. Date 2015]

46



Result of accuracy in the verification of interrupts

• Proofs: the assertion is never violated

• Warnings: the assertion might be violated (it may include false positives)

• Violations: the assertion must be violated

47

Total number of 
assertions

262 assertions

BMC
[DATE 15]

Modular
(Thread model) 

[VMCAI 14]
8

IntAbs
(Our method)

174 unknown

144 proofs (more accurate)118 warnings

254 warnings proofs

88 violations



• Background & Motivation

• Proposed method

• Customized constraint-based analysis for concurrent software

• Three applications

• More accurate assertion checking for interrupt-driven software

[Sung et al., ASE 2017]

• More scalable semantic diffing of multi-threaded programs

[Sung et al., ASE 2018]

• More efficient testing web applications

[Sung et al., FSE 2016]

• Conclusion

48



The need for computing semantic differences
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Concurrent 
program P

Concurrent 
program P’

Concurrent 
program P’’

Change by 
person 1

Change by 
person 2

Change by 
person 3

Verification
/Testing

Verification
/Testing

Verification
/Testing

Do we need to run them every time even for small program changes? 

Finding semantic 
differences based on 

program changes

Finding semantic 
differences based on 

program changes



Semantic difference

New data-flow edge

== ?
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Thread1() {
lock(a); 
x = 1;
a = x;
unlock(a);

}

Thread2() {
lock(a);
x = 3;
unlock(a);

}

Concurrent program P

Thread1() {
lock(a); 
x = 1;
a = x;
unlock(a);

}

Concurrent program P’

Thread2() {
lock(a);
x = 3;
unlock(a);

}



Semantic difference – prior work
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- Bounded Model Checking (BMC) based approach [Bouajjani et al. SAS 2017]

Thread1() {
lock(a); 
x = 1;
tmp = 0;
a = x;
assert(tmp != 1);
unlock(a);

}

Thread2() {
lock(a);
x = 3;
tmp = 1;
unlock(a);

}

Instrumented program P

Thread1() {
lock(a);
x = 1;
tmp = 0;
a = x;
assert(tmp != 1);
unlock(a);

}

Thread2() {
lock(a);
x = 3;
tmp = 1;
unlock(a);

}

Instrumented program P’

The both 
assertions are 

violated?
New data-flow edge Not scalable!



Scenario (2) – revisit
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Rule-based over-approximation 
of interferences

Program Testing/Verification methods

Constraint-based program analysis

Multi-threaded
programs

Infeasible interferences 
between threads

Semantic diffing for 
program changes

Scalability ↑



Over-approximated feasible interference for 
each program
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Actual feasible 
interferences 

in P

Constraint 
Solver

(Datalog)Datalog rules

Program facts of P

Over-approximated 
feasible interferences

All interferences 
between threads

Infeasible interferences 
based on specific patterns 

by rules

Over-approximated 
feasible interferences 

between threads



Semantic difference – our approach
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Thread1() {
1: lock(a); 
2: x = 1;
3: a = x;
4: unlock(a);

}

Thread2() {
5: lock(a);
6: x = 3;
7: unlock(a);

}

Concurrent program P

All interferences 
between threads

read-from(2, 3)
read-from(6, 3)



Semantic difference – our approach
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Thread1() {
1: lock(a); 
2: x = 1;
3: a = x;
4: unlock(a);

}

Thread2() {
5: lock(a);
6: x = 3;
7: unlock(a);

}

Concurrent program P

All interferences 
between threads

Infeasible interferences 
based on specific patterns 

by rules

read-from(2, 3)
read-from(6, 3) read-from(6, 3)

Over-approximated 
feasible interferences 

between threads

read-from(2, 3)



Semantic difference – our approach
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Thread1() {
1: lock(a); 
2: x = 1;
3: a = x;
4: unlock(a);

}

Thread2() {
5: lock(a);
6: x = 3;
7: unlock(a);

}

Concurrent program P

read-from(2, 3)

Concurrent program P’

read-from(2, 3), 
read-from(6, 3)

Thread1() {
1: lock(a); 
2: x = 1;
3: a = x;
4: unlock(a);

}

Thread2() {
5: lock(a);
6: x = 3;
7: unlock(a);

}

Are they 
different?

Difference: read-from(6, 3)



Diffing two sets of over-approximated interferences

Actual feasible 
interferences 

in P

Actual feasible 
interferences in 

P’

57

Comparison of two over-approximated sets may lose soundness,
but we show (empirically) the changes related to concurrency are valid
(Thread-creation order, Cond-wait statements and Statement order) 

Over-approximated 
feasible interferences

Over-approximated 
feasible interferences



Possible differences (1)

• Under-approximation (𝑃1−) \ Under-approximation (𝑃2−)

58

• Under-approximation (𝑃1−) \ Over-approximation (𝑃2+)

• Over-approximation (𝑃1+) \ Under-approximation (𝑃2−)



Possible differences (2)
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It is not easy to compute under-approximated behaviors with 

Datalog rules since the rules only captures possible partial 

traces, not traces that must appear in all feasible traces

Thread1() {
1: x = 1;

2: y = x;

3: k = y;
}

Thread2() {
4: x = 2;

}

• Under-approximation (𝑃1−) \ Under-approximation (𝑃2−)

• Under-approximated read-from

✓ {(2, 3)}

Cannot happen in the same execution

• Over-approximated read-from

✓ {(1, 2), (4, 2), (2, 3)



Possible differences (3)
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It might produce differences for the same program 

Thread1() {
1: x = 1;

2: y = x;

3: k = y;
}

Thread2() {
4: x = 2;

}

• Under-approximated read-from

✓ {2, 3}

• Over-approximated read-from

✓ {(1, 2), (4, 2), (2, 3)}

• Over-approximation (𝑃1+) \ Under-approximation (𝑃2−)

Result of Over-approximation (𝑃1+) \ Under-approximation (𝑃2−): {(1, 2), (4, 2)}



Experimental setup for Application (2)

61

• Purpose

• Do we get scalable diffing results by finding valid semantic differences?

• Specific to concurrency-related changes: Thread-creation order, Cond-wait 
statements and Statement order

• Benchmarks

• Concurrent program bug patches and changes
[Yu et al. ACM SIGARCH 2009, Yu et al. Tech Report 2008, Bouajjani et al. SAS 2017, Beyer 
TACAS 2015, Bloem CAV 2014, Lu et al. ACM SIGARCH 2008]

• Concurrent patches from bug reports (Gcc, Glib, Jetty and LLVM)



Scalability improvement for diffing

The small-sized benchmarks

Num. of 
benchmarks

41

Total LOC 5,546 lines

Types Sync, Th.Order, St.Order, Cond

62

Execution time of
previous approach

[Bouajjani et al. SAS 2017]

Execution time of 
our approach 

> 3 hours 15.57 s

• Execution time improvement

The large-sized benchmarks

Num. of 
benchmarks

6

Total LOC 7,986 lines

Types Th.Order, Cond

Execution time of 
previous approach

[Bouajjani et al. SAS 2017]

Execution time of 
our approach 

Not available 140.28 s

Emprical accuracy: the differences our approach found are all valid (inter-thread) dataflows



• Background & Motivation

• Proposed method

• Customized constraint-based analysis for concurrent software

• Three applications

• More accurate assertion checking for interrupt-driven software

[Sung et al., ASE 2017]

• More scalable semantic diffing of multi-threaded programs

[Sung et al., ASE 2018]

• More efficient testing web applications

[Sung et al., FSE 2016]

• Conclusion

63



Testing web applications

64

click 1
click 2

click 3

click 4

click 5

“click 1 (color white) -> click 4 (64 GB) -> click 6 (Add to Bag)” => Add to Bag (white + 64 GB)
“click 4 (64 GB) -> click 1 (color white) -> click 6 (Add to Bag)” => Add to Bag (white + 64 GB)

click 6

Should we enumerate all 
possible sequences of clicks?



Finding redundant test sequence
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click1 click 4 click 3 click 2

Test sequence Dependency information 

click 1

Independent

click 4

click 4 click 1 click 3 click 2

Redundant test sequence

Running click1->click4 and click4->click1 from the same program state will
reach the same program state since running the events are independent

- inspired by Partial Order Reduction [Godefroid, Springer 1996]

(if there is a no feasible interference 
between them)

Program state 1

Program state 2

click 1
(white)

click 1
(white)

click 4
(64 GB)

click 4
(64 GB)



Application (3) - revisit
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Program Testing/Verification method

Constraint-based program analysis

Web applications

Feasible interferences
between events

Testing with test 
generation

How do we 
compute?

More efficient



Understanding concurrent events in web 
applications

67

HTML

head body

title h1 p

Page Title My First
Heading

My first 
paragraph.

Handler A

Handler BHandler C

Event handlers are attached to DOMs -> We analyze dependency between DOM-events



Computing interference between events

68

Constraint 
Solver

(Datalog)
Datalog rules
- DOM-event relations

Facts of web applications

Over-approximated feasible 
interferences between event handlers



Over-approximation of feasible interferences
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-> All event pairs considered in sequence generation for the testing (previous method)

-> Event pairs which have over-approximated feasible interferences (Our analysis)
It subsumes event pairs which have actual feasible interferences (dashed circle)

-> Considering this space for sequence generation may include actual infeasible 
interferences, but do not miss any feasible interferences in sequence generation.



Application (3) - revisit
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Program Testing/Verification methods

Constraint-based program analysis

Web applications

Feasible interferences
between events

Testing with test 
generation

How do we plug-in?

More efficient



Artemis (testing tool)

Test it!

Pick one Generate new sequences

Adds them to the worklist

e1

e2

e3

e4

e1-e1
e1-e2
e1-e3
e1-e4

Each iteration (one cycle)
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Work list



Artemis (testing tool)

Test it!

Pick one Generate new sequences

Adds them to the worklist

e1

e2

e3

e4

e1-e1
e1-e2
e1-e3
e1-e4

e2-e1
e2-e2
e2-e3
e2-e4
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e2-e1
e2-e2
e2-e3
e2-e4

Work list

Each iteration (one cycle)



Interference-enabled filtering redundant 
sequences (our improvement)

Pick one Generate new sequences

e1

e2

e3

e4

Independent pairs 
based on interferences
{(e1, e2), (e2, e2)}

e2-e3
e2-e4

Filter them with dependency information
(Partial Order Reduction [Godefroid, Springer 1996])
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e2-e1
e2-e2
e2-e3
e2-e4

e1-e1
e1-e2
e1-e3
e1-e4

Test it!

Work list

Each iteration (one cycle)



Experiments setup for Application (3)
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• Purpose

• Are there many independent (no interference) pairs of events?

• Do we get better test coverage (more efficient) by filtering redundant test 
sequences?

• Benchmarks

• JavaScript-based games from web

• Benchmarks used from Artemis



Result of dependent event pairs

Summary

Num. of benchmarks 21

Total LOC 18,599 lines

Constraints 50,246

Analysis Time 50.11s

54% of  max deps. are dependent

Dep. pairs / Indep. pairs
(Previous Artemis)

Dep. pairs / Indep. pairs
(Our approach)

3,898 / 0 2,120 / 1,778
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60%

80%

100 200 300 400 500

Artemis Artemis + Jsdep
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more than 16% coverage!

Result of test coverage in testing

• Branch coverage w.r.t. the number of iterations

Y-axis: Branch coverage
X-axis: the number of iterations in Artemis

Our approachArtemis



Further experiments
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• Purpose

• Does our approach reduce the size of worklist efficiently?

• Does our approach have large overhead in terms of execution time?

• What’s the factors that affect testing time?

• Length of test sequences

• Code coverage and read/written properties in testing



Result of the size of worklist (1)
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Y-axis: relative size of worklist in our approach compared to Artemis
X-axis: the number of iterations in Artemis



Result of the size of worklist (2)

79

Y-axis: relative size of worklist in our approach compared to Artemis
X-axis: benchmarks

The relative size of worklist does not change as we filter out dependencies linearly
-> The better testing coverage is possible if we further reduce the size of worklist



Result of execution time after 500 iterations

80

Y-axis: normalized execution time of our approach compared to Artemis
X-axis: benchmarks

No evidence that our 
approach is always slow



Possible factors for execution time 
– length of test sequences
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Y-axis: execution time
X-axis: length of test sequences

We are not able to conclude that 
there is a correlation between 
the length of test sequences and 
the execution time since the plot 
does not show any tendency



Possible factors for execution time 
– coverage and read/written properties
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Testing more lines of code by reading and writing more variables affects the testing time
-> testing time can be drastically reduced if we cache some program states corresponding 
to some of the common test subsequences



Conclusion

• Our constraint-based analysis of interferences between concurrent events significantly  
improves the performance of concurrent testing/verification techniques

• Method

• Customized constraint-based program analysis to analyze interferences between concurrent events

• Results

• More accurate verification of interrupt software

• More scalable semantic diffing of multi-threaded programs

• More efficient testing of web applications
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Thank you!


